차원 해석을 이용한 수직압연에 대한 도그본 형상 예측

윤덕중¹·황상무[#]

Dimensional Analysis of Edge Rolling for the Prediction of the Dog-bone Shape

D. J. Yun, S. M. Hwang

(Received September 30, 2011 / Revised October 31, 2011 / Accepted November 30, 2011)

Abstract

Precision control of the width of slabs is vital for product quality and production economy in steel rolling mills. However, the formation of so called 'dog-bone' at the edge of the slab would affect the final width during the horizontal rolling that follows. Therefore, it is essential to predict and control the dog-bone shape. In this paper, a model is derived by using a number of finite element simulations for edge rolling and a least square regression analysis. The prediction accuracy of the proposed model is examined by comparing the predictions from finite element simulation with experiment results in the literature.

Key Words : Dog-bone Shape, Edger, Vertical Rolling, Finite Element Method, Dimensionless

1. 서 론

두꺼운 슬라브(Slab)를 두 롤 사이로 통과시켜 얇 은 강판으로 만드는 압연 공정에서 폭 퍼짐 예측은 중요한 과제 중 하나이다. 폭 퍼짐은 조압연 (Roughing mill)과 사상압연(Finish mill) 전 과정에서 발생한다. 과거 연구 결과들은 대부분 사상압연에 서 일어나는 폭 퍼짐 예측 모델 식이었고, 조압연 과정에서 일어나는 예측 모델 식이었고, 조압연 과정에서 일어나는 예측 모델 식은 거의 없다[1~4]. 조압연 영역은 수직압연과 수평압연이 연속적 으로 진행된다. 따라서 폭 퍼짐을 예측하기 위해 서는 수직압연과정에서 나타나는 슬라브의 형상 예측이 필요하고, 이 형상으로부터 수평 압연 시 발생하는 슬라브의 폭 퍼짐 양을 구할 수가 있다. 하지만 수평압연과 달리 수직압연에 의한 슬라브 의 변형은 폭 방향에 대하여 균일하게 발생하지

1. 포항공과대학교 기계공학과

교신저자: 포항공과대학교 기계공학과, E-mail: smhwang@postech.ac.kr 않고 양 끝 단에서 국부적으로 발생하게 된다. 슬 라브의 양쪽만 변형하여 만들어진 그 형태는 Fig. 1 과 같이 변형되며 이 형상이 개 뼈처럼 보인다 고 하여 도그본(Dog-bone)이라 불린다.

Dog-bone 형상을 예측하는 기존 모델은 Okado 식이 있다[4]. 하지만 플라스티신(plasticine) 시험과 1/7 축소 시험 압연기를 이용하여 만들어진 식을 실제 압연 사이즈로 환산한 식이여서 상당한 부 분에서 오차가 보여진다. 또한 형상이 있는 롤 (VSB)에 대해서는 예측이 불가능하다. 이런 오차 와 형상을 고려할 수 있는 모델을 개발하기 위해 실제 압연 공정을 가장 잘 해석할 수 있는 유한 요소법(Finite Element Method)을 이용하였다. 유한 요소해석은 변형이 많은 구간에 충분한 mesh 를 사용하였고, 슬라브의 폭과 두께에 대해 1/2 해석 을 하였다.

2. Dog-bone 형상 예측 모델

본 연구에서는 조압연 영역에서 발생하는 폭 퍼짐 양을 구하기 위한 첫 번째 단계로 수직압연 에서 나타나는 dog-bone 형상 예측 모델 개발에 중점을 두었다.

2.1 무차원 변수

수직압연에 의해 변형된 슬라브의 형상을 예측 을 위해 몇 가지 변수들을 선정하였다. Fig. 1 에서 보는 것과 같이 dog-bone 의 최고점에서 두께를 h_n, 롤과 접촉하고 있는 높이를 h_r 그리고 dog-bone 최고 높이가 발생하는 폭 방향 위치를 A 라고 정 의했다. 이 변수들의 값을 알면 dog-bone 형상을 예측할 수 있다. 이 논문에서는 변수들에 미치는 공정조건들을 유한요소해석을 통해 회귀분석을 하여 모델 식을 유도하였다. 유한요소해석에 사용 된 유동응력(flow stress)식은 Shida 식을 사용하였 다[5].

3 개의 주요 변수(h_b, h_r, A)들은 다음과 같은 압 연 조건에 영향을 미친다.

$$P = f(h_0, W_0, W_E, \omega, T, C_0, R)$$
⁽¹⁾

여기서 ω는 롤 속도, *T* 는 슬라브 온도, *C*₀ 는 카본함량, *R* 는 롤 반경이다.

식(1)을 무차원 함수로 나타내면

$$\frac{h_r}{h_0} = f\left(r, \frac{h_0}{\Delta W}, \frac{R}{W_0}, \frac{T}{c_1}, \frac{\omega}{c_2}, C_0\right)$$
(2)

$$\frac{h_b}{h_0} = f\left(r, \frac{h_0}{\Delta W}, \frac{R}{W_0}, \frac{T}{C_1}, \frac{\omega}{C_2}, C_0\right)$$
(3)

Fig. 2 Definition of the zone I and II of the dog-bone at roll exit

$$\frac{A}{W_0} = f\left(r, \frac{h_0}{W_0}, \frac{h_0}{R}, \frac{T}{c_1}, \frac{\omega}{c_2}, C_0\right)$$
(4)

$$r = \frac{W_0 - W_E}{W_0} \tag{5}$$

여기서 $c_1 = 1$ °C 과 $c_2 = 1$ rad/s 이다.

2.2 무차원 변수에 대한 모델 식

식(2)와(3)의 모델 식을 구하기 위해 6 개의 무 차원 변수들의 영향을 알아 보았다. 변수들의 영 향을 분석하기 위해 유한요소해석을 실시하였으 며 슬라브 폭 양끝에서 변형이 많이 발생하기 때 문에 양 끝으로 충분한 mesh 를 사용하였다(Fig. 3). 여러 가지 변수들 중에서 롤 속도, 카본 함량, 롤 반경의 영향이 굉장히 적다는 것을 알 수 있 다(Fig. 4). 그리고 조압연에서 슬라브 온도의 변화 는 크지 않기 때문에 무시할 수 있다. 그러므로, 식(2)와 (3)은 다음과 같이 나타낼 수 있다.

$$\frac{h_r}{h_0} = f\left(r, \frac{h_0}{\Delta W}\right) \tag{6}$$

$$\frac{h_{b}}{h_{0}} = f\left(r, \frac{h_{0}}{\Delta W}\right) \tag{7}$$

식(6)과 (7)을 구하기 위해 유한요소해석을 하였 다. 해석 범위는 폭 1000~1600mm, 폭 압연 양 20~ 80mm, 슬라브 두께 50~250mm, 슬라브 온도 1000 ℃ 로 고정하여 해석을 하였다. 다른 변수들은 크게 영향을 미치지 않기 때문에 폭, 두께 그리고 폭 압연양만 변화시켜 총 80번의 유한요소해석을 하 였다. 해석 결과를 바탕으로 회귀분석(Least square regression analysis)을 통해 다음과 같은 식을 얻었 다[6].

Fig. 3 Finite element system for the slab

$$\frac{h_r}{h_0} = 1.064 - 0.0018027 \left(\frac{h_0}{\Delta W}\right) + 1.0553r - 0.075 \left(\frac{h_0}{\Delta W}\right) r$$
(9)

앞에서 구한 두 변수와 같은 방법으로 식(4)에 대한 무차원 변수들의 영향을 알아 보았다. *A/W₀* 는 폭 압연 양을 제외하고 모든 무차원 변수들에 대해 영향을 거의 받지 않다는 것을 알았다.(Fig. 5). 그러므로, 식(4)는 다음과 같다.

$$\frac{A}{W_0} = f(r) \tag{10}$$

A/W₀는 r 이 증가할수록 값이 증가하는 것을 알 수 있으며 2 차 곡선으로 근사화 시킬 수 있 다.(Fig. 5) 또한 슬라브 폭이 증가할수록 A 는 선 형적으로 증가하며, 롤 반경이 증가할수록 A 가 감소하는 경향을 알 수 있었다. 이 결과를 바탕으 로 회귀분석을 통해 아래와 같은 식을 얻을 수 있다.

$$\frac{A}{W_0} = 0.19396r + 0.01965 \tag{11}$$

2.3 Dog-bone 형상 모델 식

두꺼운 슬라브가 수직 롤을 통과하면 슬라브는 양끝에서 집중적으로 변형이 발생하게 된다. 그 변형된 형상을 보면 폭 방향으로 균일하지 않고 슬라브의 끝부분에서 볼록하게 올라오는 것을 관 찰할 수 있다. 이렇게 올라온 형상을 예측하기 위 해 3 개의 변수들을 정의하였고, 각 변수들에 대 한 모델 식을 유한요소해석을 통해 얻었다.

앞에서 구한 3개의 주요 변수만 이용하여 Dog-Bone 형상을 예측 할 수는 없으므로, 3개의 변수 값과 경계조건을 이용하여 폭 방향에 대한 두께 함수를 식으로 구할 수 있다. Fig. 2 에서 보는 것 과 같이 dog-Bone 형상을 정확히 예측하기 위해 2 개의 영역으로 나누고 각각의 함수를 이용하면 정확히 예측할 수 있다. 2개의 영역을 나누기 위 한 기준으로 제 2영역에서 최고점을 기준으로 좌 우 대칭인 2차함수로 가정하였다.

$$h_1(z) = \frac{h_0}{2} + \frac{1}{2} (h_r - h_0) \left(\frac{2z}{(W_E - 4A)}\right)^{\circ}$$
(12)

$$h_{2}(z) = \frac{1}{2} \frac{h_{r} - h_{b}}{A^{2}} \left(z - \frac{W_{E}}{2} + A \right)^{2} + \frac{h_{b}}{2}$$
(13)

2.4 VSB 롤에 의한 변수들의 영향

식(8), (9)와 (11)은 평평한 수직 롤을 사용할 때 나타나는 dog-bone 형상을 근사화한 식이다. 하지 만 200~250mm 인 두꺼운 슬라브는 VSB(Vertical Scale Breaker) 롤에 의해 폭 압연이 진행되며, 이 때 롤 형상에 의해 dog-bone 모양이 다르게 나타 난다. VSB 롤 형상에 의해 dog-bone 의 h_b 값은 감 소하며, A는 슬라브 폭의 중심으로 이동하고, h_r 은 작아지는 경향을 유한요소해석 결과로부터 알 수 있다(Fig. 6). 이런 결과를 이용하여 각 항목에 대 해서 경향성을 분석한 후 앞에서 구해진 모델에 대한 보정 식을 만들었다. 이 논문에서 사용하 VSB 롤은 POSCO 광양 3 열연에서 사용하고 있는 사이즈를 사용하였다.

h, 값은 VSB 롤 때문에 수직 롤을 사용할 때보 다 작게 나오는데 그 작아지는 양은 4 차 함수로 근사화 할 수 있고, h, 값은 평판 롤과 VSB 롤이 선형적인 관계를 알 수 있다.(Fig. 7) 이러한 경향 성을 이용하면 식(14)와 식(15)를 희귀분석을 통해 구할 수 있다. 같은 방식으로 A 값도 구하게 되면 식 (16)과 같이 된다.

$$\frac{h_b}{2}\Big|_{VSB} = \frac{h_b}{2}\Big|_{Flat}$$
(14)
-0.0022 $\left(\frac{h_b}{2}\right)^2 + 0.4479\left(\frac{h_b}{2}\right) - 23.262$

$$h_r|_{VSB} = 0.644 \left(h_r |_{Flat} \right) + 69.78 \tag{15}$$

$$A|_{VSB} = A|_{Flat} + 4.693 \times 10^{-5} \left(\frac{h_b}{2}\right)^4 - 0.021888 \left(\frac{h_b}{2}\right)^3 + 3.8218 \left(\frac{h_b}{2}\right)^2 \quad (16) -295.76898 \left(\frac{h_b}{2}\right) + 8558.11$$

3. 모델 검증 및 비교

Dog-bone 형상을 예측하기 위해 다양한 공정조 건으로 유한요소해석을 한 결과 Dog-bone 형상에

Fig. 6 Definition of difference between flat and VSB edge roll

Fig. 7 Effect of h_r for flat rolls on that for VSB rolls

Fig. 8 Effect of initial slab thickness on relative slab thickness at the maximum height of dog-bone

영향을 미치는 가장 큰 요소는 폭 압연 양과 슬 라브 두께이며 이 두 압연 조건을 제외한 나머지 조건들은 3 개의 주요 변수들에 대해서는 작거나 거의 영향이 없다는 것을 알게 되었다. 가장 크게 영향을 미치는 두 조건을 보게 되면 h_s/h_o 은 슬 라브의 두께가 증가할수록 선형적으로 감소하고, 폭 압연 양이 커질수록 일정하게 증가하는 것을 알 수 있다(Fig. 8).

Dog-bone 형상을 예측하기 위해 3 개의 주요 변수들을 정의하였고 그 변수들이 폭 압연 양과 두께에 대해 선형적인 관계를 이용하여 식 (8)과 (9)를 유도할 수 있다. 유한요소해석 기반으로 만 들어진 모델 식의 검증을 위해 Shibahara 논문에 서 발췌한 실험 결과를 모델 결과와 비교하여 검증하였다[3]. 공정조건은 두께는 98mm, 폭은 1335mm 그리고 폭 압연양은 53mm 이다. Fig. 9에서 dog-bone 최고 높이 차이를 보면 실험결과와 모델 과의 차이는 0.56mm 이고, Okado 모델은 조금 더 높은 1.4722mm 이다[4]. 모델 결과가 dog-bone 형 상을 잘 예측하고 있는 것을 알 수 있다. 하지만 보다 많은 검증을 위해 다양한 공정조건에 실험 이 필요하며 향후 과제로 진행될 것이다.

추가적으로 다양한 공정조건에 대해서 유한요 소해석을 하였으며 그 결과를 유한요소기반 모델 로부터 얻은 결과와 비교 하였다. Fig. 10 을 보면 유한요소기반 모델에서 계산된 h_b/h_0 는 대부분 2% error 안에 있는 것을 확인할 수 있다.

Fig. 11 은 유한요소해석 결과와 모델결과에서 나온 dog-bone 형상을 비교한 그림이다. 결과를 보

Fig.10 Comparison of FEM and the model for the relative initial slab thickness at peak bulging

Fig.11 Comparison of FEM and the model for dog bone shape. Process condition; slab thickness =70mm, slab width=1540mm, width reduction =55mm, 0.2% plain carbon steel, flat edge roll

면 유한요소기반 모델이 형상을 잘 예측하는 것 을 알 수 있고, 기존 모델에서 구한 dog-bone 최고 높이가 약 2mm 정도 차이를 보이고 있다.

Fig. 12는 VSB 롤 효과를 알아보기 위해 3개의 변수들의 값을 유한요소해석과 모델들의 결과와 비교 하였다. Okado 모델 결과의 값들이 대체적으 로 차이가 크며 롤 형상에 대한 효과를 전혀 반 영하지 못하고 있는 것을 알 수 있다. 하지만 식 (14)~(16)을 사용한 모델 결과는 2mm 이내에 차이 로 해석결과를 잘 예측하고 있다.

4. 결 론

수직압연과 수평압연이 동시에 진행되는 조압 연 단계에서 슬라브의 폭 퍼짐을 계산하기 위해 선행 단계로 수직압연에 대한 슬라브 변형 예측 모델을 개발하였다. 본 논문에서는 기존 모델 형 식과 유한요소해석 결과를 바탕으로 회귀분석을 통해 수직압연 시 발생하는 dog-bone 형상 예측 모델을 개발하였고 그 결과는 다음과 같다.

(1) 수직압연 된 슬라브의 dog-bone 형상은 폭 압연 양에 가장 큰 영향을 받는 것으로 나타났다. 폭 압연 양과 슬라브의 두께가 두꺼워질수록 h_b 와 h_r 이 크게 증가하는 것을 알 수 있었다. 이 외 다른 압연 조건들은 영향이 적거나 거의 나타 나지 않았다.

(2) 슬라브의 두께가 증가할 수록 식 (8)과 (9) 의 값이 선형적으로 감소하는 결과를 얻었고, 또 한 폭 압연 양이 증가할수록 이 값들도 일정하게 증가한다는 것을 알 수 있었다.

(3) 본 연구에서는 기존의 플라스티신 시혐으로 부터 만들어진 실험식의 단점을 보완하여 좀 더 정확하게 예측할 수 있도록 실제 공정 조건으로 유한요소해석을 하여 식을 유도하였다. (4) 기존에 다루지 않았던 VSB 롤을 이용한 압 연에서도 h, hb 그리고 A 변수들의 영향 분석 및 보정 식을 만들었다. 따라서 조압연 전 영역에서 수직압연에 대한 슬라브 형상 예측이 가능해졌다.

5. 향후 과제

본 연구에서는 수직압연에서 나타나는 dog-bone 형상 예측 모델 식을 만들었다. 유한요소해석을 기반으로 만들어진 식이며 유한요소해석 결과와 모델 결과의 높은 신뢰성 확보를 위해 다양한 공 정조건의 실험이 추가적으로 실행되어야 한다.

6. 후 기

본 연구는 POSCO 의 연구비 지원에 의해 수행 되었으며, 관계자 여러분께 깊은 감사를 드립니다.

참 고 문 헌

- [1] S. Xiong, X. Zhu, X. Liu, G. Wang, Q.Zhang H. Li, X. Meng, and L. Han, 1997. Mathematical Model of Width Reduction Process of Roughing Trains of Hot Strip Mills, Shanghai metals, Vol. 19 No. 1, pp. 39~43.
- [2] V. B. Ginzburg, 1993. High-quality Steel Rolling Theory and Practice, Marcel Dekker, New York, pp. 315~350.
- [3] T. Shibahara, Y. Misaka, T. Kono, M. Koriki, H. Takemoto, 1981, Edger Set-up Model at Roughing Train in Hot Strip Mill, J. Iron and Steel Inst. Jpn., Vol. 67, No. 15, pp. 2509~2515.
- [4] M. Okado, T. Ariizumi, Y. Noma, K. Yabuughi, Y. Yamazaki, 1981, Width Behavior of Head and Tail of Slabs at Edge Rolling in Hot Strip Mills, J. Iron and Steel Inst. Jpn., Vol. 67, No. 15, pp. 2516~2525.
- [5] S. Shida, 1986, Empirical Formula of Flow-stress of Carbon Steels, J. Jpn. Soc. Technol. Plast., Vol. 9(85), No. 103, pp.127~132.
- [6] S. C. Chapra, R. P. Canale, 1988, Numerical Methods for Engineers, McGRAW-HILL, 2nd, p. 330.