참고문헌
- Animut, G., A. L. Goetsch, R. Puchala, A. K. Patra, T. Sahlu, V. H. Varel and J. Wells. 2008. Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim. Feed Sci. Technol. 144:212-227. https://doi.org/10.1016/j.anifeedsci.2007.10.014
- AOAC. 1990. Official methods of analyses, 15th edn. Assoc. Offic. Anal. Chem, Arlington, VA.
- Barry, T. M. 1983. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 3.3Rates of body and wool growth. Br. J. Nutr. 54:211-217. https://doi.org/10.1079/BJN19850106
- Bhatta, R., Y. Uyeno, K. Tajima, A. Takenaka, Y. Yabumoto, I. Nonaka, O. Enishi and M. Kurihara. 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92:5512-5522. https://doi.org/10.3168/jds.2008-1441
- Burns, R. E. 1971. Method for estimation of tannin in the grain sorghum. J. Agron. 163:511-512.
- Chanthakhoun, V., M. Wanapat, C. Wachirapakorn and S. Wanapat. 2011. Effect of legume (Phaseolus calcaratus) hay supplementation on rumen microorganisms, fermentation and nutrient digestibility in swamp buffalo. Livest. Sci. :10.1016/j.livsci.2011.02.003.
- Cherdthong, A., M. Wanapat, P. Kongmun, R. Pilajan and P. Khejornsart. 2010. Rumen fermentation, Microbial protein synthesis and cellulolytic bacterial population of swamp buffaloes as affected by roughage to concentrate ratio. J. Anim. Vet. Adv. 9:1667-1675. https://doi.org/10.3923/javaa.2010.1667.1675
- De Semet, S., D. I. Demeyer and C. J. van Nevel. 1992. Effect of defaunation and hay:concentrate ratio on fermentation, fibre digestion and passage in the rumen of sheep. J. Anim. Feed Sci. Technol. 37:333-344. https://doi.org/10.1016/0377-8401(92)90016-Y
- Denman, S. E., N. Tomkins and C. S. McSweeney. 2005. Monitoring the effect of bromochloromethane on methanogen populations within the rumen using qPCR. In: 2nd International Symposium on Greenhouse Gases and Animal Agriculture (Ed. C. R. Soliva, J. Takahashi and M. Kreuzer). p. 112 ETH Zurich, Switzerland.
- Evans, J. D. and S. A. Martin. 2000. Effects of thymol on ruminal micro-organisms. J. Current Microbiol. 41:336-340. https://doi.org/10.1007/s002840010145
- Field, J. A., S. Kortekaas and G. Lettinga. 1989. The tannin theory of methanogenic toxicity. Biol. Wastes 29:241-262. https://doi.org/10.1016/0269-7483(89)90016-5
- Franzolin, R. and B. A. Dehority. 1996. Effect of prolonged high-concentrate feeding on ruminal protozoa concentrations. J. Anim. Sci. 74:2803-2809.
- Galyean, M. 1989. Laboratory Procedures in Animal Nutrition Research. New Mexico State University.
- George, W. S. and R. E. Craig. 2006. Samanea saman (rain tree). Species Profiles for Pacific Island Agroforestry.
- Grainger, C., T. Clarke, M. J. Auldist, K. A. Beauchemin, S. M. McGinn, G. C. Waghorn and R. J. Eckard. 2009. Potential use of Acacia mearnsii condensed tannins to reduce methane emissions and nitrogen excretion from grazing dairy cows. Can. J. Anim. Sci. 89:241-251. https://doi.org/10.4141/CJAS08110
- Hess, H. D., T. T. Tiemann, F. Noto, J. E. Carulla and M. Kruezer. 2006. Strategic use of tannins as means to limit methane emission from ruminant livestock. In greenhouse gases and animal agriculture: an update. In: International Congress Series No. 1293 (Ed. C. R. Soliva, J. Takahashi and M. Kreuzer). Elsevier, The Netherlands, pp. 164-167.
- Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.
- Jouany, J. P. and B. Lassalas. 1997. Study of the adaptation of the rumen ecosystem to the antimethanoginic effect of monensin measured in vivo. Reprod. Nutr. Dev. 37(Suppl. 1): S69-S70. https://doi.org/10.1051/rnd:19970752
- Koike, S. and Y. Kobayashi. 2001. Develop and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobactor succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204:361-366. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x
- Lusin, R. and M. Wanapat. 2010. Effect of roughage to concentrate ratio and rice bran oil supplementation on rumen fermentation characteristics using in vitro gas production technique. 14th AAAP conference at pingtung university, Taiwan, p. 353-356.
- Mackie, R. I., F. M. C. Gilchrist, A. M. Robberts, P. E. Hannah and H. M. Schwartz. 1978. Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets. J. Agric. Sci. 90:241. https://doi.org/10.1017/S0021859600055313
- McGinn, S. M., K. A. Beauchemin, T. Coates and D. Colombatto. 2004. Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J. Anim. Sci. 82:3346-3356.
- Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim. Res. Dev. 28:7-55.
- Miron, J., D. Ben-Ghedalia and M. Morrison. 2001. Invited review: Adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci. 84:1294-1309. https://doi.org/10.3168/jds.S0022-0302(01)70159-2
- Moss, A. R., J. P. Jouany and J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. J. Ann. Zootech. 49:231-253. https://doi.org/10.1051/animres:2000119
- Mueller-Harvey, I. 2006. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 86:2010-2037. https://doi.org/10.1002/jsfa.2577
- Newbold, C. J., S. M. Hassan, J. Wang, M. E. Ortega and R. J. Wallace. 1997. Influence of foliage from African multipurpose trees on activity of rumen protozoa and bacteria. Br. J. Nutr. 78:237-249. https://doi.org/10.1079/BJN19970143
- Orskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503. https://doi.org/10.1017/S0021859600063048
- Patra, A. K. and J. Saxena. 2011. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 91:24-37. https://doi.org/10.1002/jsfa.4152
- Poungchompu, O., M. Wanapat, C. Wachirapakorn, S. Wanapat and A. Cherdthong. 2009. Manipulation of ruminal fermentation and methane production by dietary saponins and tannins from mangosteen peel and soapberry fruit. Arch. Anim. Nutr. 63:389-400. https://doi.org/10.1080/17450390903020406
- Puchala, R., B. R. Min, A. L. Goetsch and T. Sahlu. 2005. The effect of a condensed tannin-containing forage on methane emission by goats. J. Anim. Sci. 83:182-186.
- Reed, J. D., H. Soller and A. Wodward. 1990. Fodder tree and straw diets for sheep: Intake, growth, digestibility and the effects of phenolics on nitrogen utilization. Anim. Feed Sci. Technol. 30:39-50. https://doi.org/10.1016/0377-8401(90)90050-I
- Russell, J. B. and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Science 292:1119-1122. https://doi.org/10.1126/science.1058830
- Samuel, M., S. Sagathewan, J. Thomus and G. Mathen. 1997. An HPLC method for estimation of volatile fatty acids of rumenfluid. Indian J. Anim. Sci. 67:805-807.
- SAS, 1996. User's Guide: Statistic, Version 5. Edition. SAS. Inst, Cary, NC, USA.
- Singh, K. and G. P. Singh. 1997. Effect of concentrate levels in diet of cattle on rumen microorganisms. Indian J. Anim. Sci. 64:349-350.
- Slyter, L. L. 1976. Influence of acidosis on rumen function. J. Anim. Sci. 43:910-929.
- Tilley, J. M. A. and R. A. Terry. 1963. A two-stage technique for the digestion of forage crops. J. Br. Grassland Soc. 18:104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
- Van Soest, P. J. 1982. Nutritional ecology of the ruminant. O&B Books Inc, Corvallis.
- Vinh, N. T., M. Wanapat, P. Khejornsart and P. Kongmun. 2011. Studies of diversity of rumen microorganisms and fermentation in swamp buffalo fed different diets. J. Anim. Vet. Adv. 10:406-414. https://doi.org/10.3923/javaa.2011.406.414
- Waghorn, G. C. 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production - progress and challenges. Anim. Feed Sci. Technol. 147:116-139. https://doi.org/10.1016/j.anifeedsci.2007.09.013
- Walichnowski, Z. and S. G. Lawrence. 1982. Studies into the effects of cadmium and low pH upon methane production. Hydrobiologia 91-92:1573-5117.
- Wanapat, M. 2000. Rumen manipulation to increase the efficient use of local feed resources and productivity of ruminants in the tropics. Asian-Aust. J. Anim. Sci. 13(Suppl.):59-67.
- Wanapat, M. and A. Cherdthong. 2009. Use of real-time PCR technique in studying rumen cellulolytic bacteria population as affected by level of roughage in Swamp buffalo. Curr. Microbiol. 58:294-299. https://doi.org/10.1007/s00284-008-9322-6
-
Wanapat, M. and O. Pimpa. 1999. Effect of ruminal
$NH_3$ -N levels ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Aust. J. Anim. Sci. 12:904-907. https://doi.org/10.5713/ajas.1999.904 - Wang, C. J., S. P. Wang and H. Zhou. 2000. Influences of flavomycin, ropadiar, and saponin on nutrient digestibility, rumen fermentation, and methane emission from sheep. J. Anim. Feed Sci. Technol. 148:157-166.
- Wora-anu, S., M. Wanapat, C. Wachirapakorn and N. Nuntaso. 2000. Effects of roughage to concentrate ratio on ruminal ecology and voluntary feed intake in cattle and swamp buffaloes fed on urea- treated rice straw. Asian-Aust. J. Anim. Sci. 13(Suppl.):236-236. https://doi.org/10.5713/ajas.2000.236
- Wright, A. G., A. J. Williams, B. Winder, C. T. Christophersen, S. L. Rodgers and K. D. Smith. 2004. Molecular diversity of rumen methanogens from sheep in western Australia. Appl. Environ. Microbiol. 70:1263-1270. https://doi.org/10.1128/AEM.70.3.1263-1270.2004
- Yan, T., R. E. Agnew, F. J. Gordon and M. G. Porter. 2000. Prediction of methane energy output in dairy and beef cattle offered grass silage based diets. J. Livest. Prod. Sci. 64:253-263. https://doi.org/10.1016/S0301-6226(99)00145-1
- Yu, Z. and M. Morrison. 2004. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Bio. Techniques. 36:808-812.
피인용 문헌
- Using Plant Source as a Buffering Agent to Manipulating Rumen Fermentation in an In vitro Gas Production System vol.26, pp.10, 1970, https://doi.org/10.5713/ajas.2013.13153
- Manipulation of ruminal fermentation and methane production by supplementation of rain tree pod meal containing tannins and saponins in growing dairy steers vol.98, pp.1, 2013, https://doi.org/10.1111/jpn.12029
- Effect of crude glycerol on in-vitro ruminal fermentation kinetics vol.15, pp.1, 2014, https://doi.org/10.1590/S1519-99402014000100015
- Changes of rumen pH, fermentation and microbial population as influenced by different ratios of roughage (rice straw) to concentrate in dairy steers vol.152, pp.04, 2014, https://doi.org/10.1017/S0021859613000658
- on rumen environment, milk yield and milk composition in lactating dairy cows vol.99, pp.2, 2014, https://doi.org/10.1111/jpn.12198
- Improvement of Nutritive Value and In vitro Ruminal Fermentation of Leucaena Silage by Molasses and Urea Supplementation vol.29, pp.8, 2016, https://doi.org/10.5713/ajas.15.0591
- rumen fermentation and digestibility of buffaloes as influenced by grape pomace powder and urea treated rice straw supplementation vol.87, pp.3, 2016, https://doi.org/10.1111/asj.12428
- RETZ. containing tannins and saponins vol.87, pp.6, 2015, https://doi.org/10.1111/asj.12494
- Tropical legume supplementation influences microbial protein synthesis and rumen ecology vol.101, pp.3, 2016, https://doi.org/10.1111/jpn.12458
- Additives on in vitro ruminal fermentation characteristics of rice straw vol.46, pp.3, 2017, https://doi.org/10.1590/s1806-92902017000300009
- rumen fermentation and methane production as affected by rambutan peel powder pp.0974-1844, 2017, https://doi.org/10.1080/09712119.2017.1371608
- Replacement of rice straw with cassava-top silage on rumen ecology, fermentation and nutrient digestibilities in dairy steers vol.59, pp.5, 2019, https://doi.org/10.1071/an17477
- Effect of bamboo grass (Tiliacora triandra, Diels) pellet supplementation on rumen fermentation characteristics and methane production in Thai native beef cattle vol.32, pp.8, 2019, https://doi.org/10.5713/ajas.18.0703
- Dietary dragon fruit (Hylocereus undatus) peel powder improved in vitro rumen fermentation and gas production kinetics vol.51, pp.6, 2012, https://doi.org/10.1007/s11250-019-01844-y
- Effect of combined supplementation of tamarind seed husk and soapnut on enteric methane emission in crossbred cattle vol.10, pp.5, 2012, https://doi.org/10.1080/17583004.2019.1640136
- Effect of Flemingia macrophylla silage on in vitro fermentation characteristics and reduced methane production vol.60, pp.16, 2012, https://doi.org/10.1071/an19281
- Evaluation of cellulolytic exogenous enzyme-containing microbial inoculants as feed additives for ruminant rations composed of low-quality roughage vol.158, pp.4, 2012, https://doi.org/10.1017/s0021859620000611
- Effect of supplementation with tree foliage on in vitro digestibility and fermentation, synthesis of microbial biomass and methane production of cattle diets vol.94, pp.4, 2012, https://doi.org/10.1007/s10457-019-00416-1
- Roughage to Concentrate Ratio and Saccharomyces cerevisiae Inclusion Could Modulate Feed Digestion and In Vitro Ruminal Fermentation vol.7, pp.4, 2012, https://doi.org/10.3390/vetsci7040151
- Manipulation of In Vitro Ruminal Fermentation and Feed Digestibility as Influenced by Yeast Waste-Treated Cassava Pulp Substitute Soybean Meal and Different Roughage to Concentrate Ratio vol.7, pp.3, 2012, https://doi.org/10.3390/fermentation7030196
- Cnidoscolus aconitifolius leaf pellet can manipulate rumen fermentation characteristics and nutrient degradability vol.34, pp.10, 2012, https://doi.org/10.5713/ab.20.0833