DOI QR코드

DOI QR Code

Inhibitory Effect of Angelica keiskei Extract in an Atopic Dermatitis Animal Model

신선초 추출물의 아토피 억제활성

  • Kim, Min-A (Department of Food Science & Biotechnology, Kyungpook National University) ;
  • Son, Hyeong-U (Department of Food Science & Biotechnology, Kyungpook National University) ;
  • Nam, Dong-Yoon (Department of Food Science & Biotechnology, Kyungpook National University) ;
  • Cha, Yong-Su (Department of Food Science & Biotechnology, Kyungpook National University) ;
  • Shin, Yong-Kyu (Bion Co, Ltd.) ;
  • Choi, Yong-Hee (Department of Food Science & Biotechnology, Kyungpook National University) ;
  • Lee, Sang-Han (Department of Food Science & Biotechnology, Kyungpook National University)
  • 김민아 (경북대학교 식품공학부) ;
  • 손형우 (경북대학교 식품공학부) ;
  • 남동윤 (경북대학교 식품공학부) ;
  • 차용수 (경북대학교 식품공학부) ;
  • 신용규 ((주)바이온 부설연구소) ;
  • 최용희 (경북대학교 식품공학부) ;
  • 이상한 (경북대학교 식품공학부)
  • Received : 2012.07.18
  • Accepted : 2012.09.14
  • Published : 2012.10.30

Abstract

The purpose of this study was to evaluate the anti-atopic-dermatitis effect of Angelica keiskei extract using a DNFB-induced animal model of atopic-dermatitis symptoms. A. keiskei was prepared via extraction with DW, 50% ethanol, and 100% ethanol in addition to fresh juice. All the extracts reduced the thickness levels of the ears and ear epidermis against swelling by DNFB inducement, especially in the aqueous-extract-treated group. The mRNA expressions of matrix metalloproteinases (MMPs), however, were not observed, which may indicate that Angelica keiskei extract alleviates the atopic-dermatitis symptoms in an MMP-independent manner. Finally, the level of the inflammatory cytokine IL-4 was inhibited only in the juice-treated group, although the IL-13 level was inhibited in the juice-, 50%-ethanol-extract-, and 100%-ethanol-extract-treated groups in a dose-dependent manner, and was not inhibited in the aqueous-extract-treated group. Taken together, these results suggest that Angelica keiskei extract has an inhibitory effect on atopic dermatitis, and may be a useful biomaterial for the development of cosmeceuticals.

신선초 추출물의 접촉성 아토피 피부염 완화효과를 확인하고 이의 소재를 개발하기 위한 목적으로 신선초 DW 추출물, 50% 에탄올 추출물, 100% 에탄올 추출물을 DNFB로 아토피를 유도한 마우스 동물모델에 각각 처리하여 in vivo 실험과 in vitro 실험을 실시하였다. 그 결과, 신선초 추출물을 처리한 군의 귀 손상정도가 대조군에 비해 감소되었으며, 귀 조직을 HE 염색으로 전체 귀 두께와 상피 두께를 측정하였을 때에도 대조군에 비해 상당한 감소를 나타냈다. 또한 RT-PCR로 염증 분자마커인 MMP series의 mRNA 발현수준을 검토한 결과, 신선초 추출물은 MMPs에 비의존적으로 마우스 아토피 피부염의 완화작용에 작용하는 것으로 나타났다. 마지막으로 염증반응을 유도한 마우스 비장조직세포에서 염증성 cytokine인 IL-4는 신선초 녹즙에서 농도 의존적으로 감소되었으며, IL-13 또한 신선초 녹즙과 에탄올 추출물에서 상당한 억제효과가 있음을 확인하였다. 이상의 결과로 신선초 추출물의 항아토피 활성을 확인 하였으며, 관련 제품 개발에 유용한 소재가 될 가능성을 확인하였다.

Keywords

References

  1. Lee SH (2010) Analysis of anti-allergic activities by chaff vinegar liquor. J Life Sic, 20, 960-963 https://doi.org/10.5352/JLS.2010.20.6.960
  2. Park YL, Park J (2007) Pathogenesis of atopic dermatitis. Korean J Invest Dermatol, 14, 67-72
  3. Lee GS, Jung HM, Oh SK, Cheong JH, Kang TJ (2012) Effects of herbal complex on atopic dermatitis in BALB/c Mice. Kor J Pharmacogn, 43, 59-65
  4. Park YM (2006) Advanced in the pathophysiology of atopic dermatitis. Pediatr Allergy Respir Dis, 16, 189-196
  5. Kim HA, Yun MY, Song HH, Cheong KJ, Yoo HS (2010) Effects of lavender, lemon and eucalyptus essential oil on Th2 related factors of DNCB-induced atopy dermatitis in NC/Nga mice model. J Pharmacopuncture, 13, 53-61 https://doi.org/10.3831/KPI.2010.13.1.053
  6. Leung DY, Soter NA (2001) Cellular and immunologic mechanisms in atopic dermatitis. J Am Acad Dermatol, 44, S1-S12 https://doi.org/10.1067/mjd.2001.109302
  7. Yawalkar N, Schmid S, Braathen LR, Pichler WJ (2001) Perforin and granzyme B may contribute to skin inflammation in atopic dermatitis and psoriasis. Br J Dermatol, 144, 1133-1139 https://doi.org/10.1046/j.1365-2133.2001.04222.x
  8. Yang HJ, Park KW, Kim HS, Cho SM, Park KM (2010) Effect of anti-atopic allergic reaction in response to oriental herb extracts. Korean J Food Sci Technol, 42, 109-114
  9. Jung HK. Park PS, Huh NC, Kim SO, Kim KS, Lee MY (1998) Inhibitory effect of Angelica keiskei Koidz green juice on the liver damage in CCL4-treated rats. J Korean Soc Food Sci Nutr, 27, 531-536
  10. Tatsuji E, Hiromu O, Kinuko N, Yoko K, Katsumi S, Masashige T, Eiji K, Hiroaki S, Ikunoshin K (2007) Antidiabetic activities of chalcones isolated from a Japanese herbm Angelica keiskei. J Agric Food Chem, 55, 6013-6017 https://doi.org/10.1021/jf070720q
  11. Park JY, Jeong HJ, Kim YM, Park SJ, Rho MC, Park KH, Ryu YB, Lee WS (2011) Characteristic of alkylated chalcones from Angelica keiskei on influenza virus neuraminidase inhibition. Bioorg Med Chem Lett, 21, 5602-5604 https://doi.org/10.1016/j.bmcl.2011.06.130
  12. Jeoung YJ, Kang KJ (2011) Effect of Angelica keiskei Extract on Apoptosis of MDA-MB-231 Human Breast Cancer Cells. J Korean Soc Food Sci Nutr, 40, 1654-1661 https://doi.org/10.3746/jkfn.2011.40.12.1654
  13. Kim SJ, Cho JY, Wee JH, Jang MY, Rim YS, Kim C, Shin SC, Moon JH, Park KH (2005) Isolation and identification of two psoralen derivatives as antioxidative compounds from the aerial parts of Angelica keiskei. Korean J Food Sci Technol, 37, 656-659
  14. Kim OK, Lee MW, Park WB, Ham SS, Kung SS (1992) The nutritional components of aerial whole plant and juice of Angelica keiskei Koidz. Kor J Food Sci Technol, 24, 592-596
  15. Jo HW, Park JC (2008) Phenolic compounds isolated from the leaves of Angelica keiskei showing DPPH radical scavenging effect. Kor J Pharmacogn, 39, 146-149
  16. Son HU, Nam DY, Kim MA, Cha YS, Kim JM, Shin YK, Lee SH (2011) Inhibitory effect of Angelica keiskei extracts on melanogenesis. Korean J Food Preserv, 18, 998-1001 https://doi.org/10.11002/kjfp.2011.18.6.998
  17. Heo JC, Nam DY, Seo MS, Lee SH (2011) Alleviation of atopic dermatitis-related symptoms by Perilla frutescens Britton. Int J Mol Med, 28, 733-737
  18. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem, 274, 21491-21494 https://doi.org/10.1074/jbc.274.31.21491
  19. Blumenthal MN, Zhong W, Miller M, Wendt C, Connett JE, Pei D (2010) Serum metalloproteinase leukolysin (MMP-25/MT-6): a potential metabolic marker for atopy-associated inflammation. Clin Exp Allergy, 40, 859-866 https://doi.org/10.1111/j.1365-2222.2010.03475.x
  20. Mori S, Pawankar R, Ozu C, Nonaka M, Yagi T, Okubo K (2012) Expression and roles of MMP-2, MMP-9, MMP-13, TIMP-1, and TIMP-2 in allergic nasal mucosa. Allergy Asthma Immunol Res, 4, 231-239 https://doi.org/10.4168/aair.2012.4.4.231
  21. Zhang M, Dai C, Zhu H, Chen S, Wu Y, Li Q, Zeng X, Wang W, Zuo J, Zhou M, Xia Z, Ji G, Saiyin H, Qin L, Yu L (2011) Cyclophilin A promotes human hepatocellular carcinoma cell metastasis via regulation of MMP3 and MMP9. Mol Cell Biochem, 357, 387-395 https://doi.org/10.1007/s11010-011-0909-z
  22. Harper JI, Godwin H, Green A, Wilkes LE, Holden NJ, Moffatt M, Cookson WO, Layton G, Chandler S (2010) A study of matrix metalloproteinase expression and activity in atopic dermatitis using a novel skin wash sampling assay for functional biomarker analysis. Br J Dermatol, 162, 397-403 https://doi.org/10.1111/j.1365-2133.2009.09467.x
  23. Li C, Lasse S, Lee P, Nakasaki M, Chen SW, Yamasaki K, Gallo RL, Jamora C (2010) Development of atopic dermatitis-like skin disease from the chronic loss of epidermal caspase-8. Proc Natl Acad Sci USA, 107, 22249-22254 https://doi.org/10.1073/pnas.1009751108
  24. Jang SN, Kim KR, Yun MY, Kang SM (2009) The effect of $\gamma$-PGA on NC/Nga mice a mouse model for mite antigen-induced atopic dermatitis. Kor J Microbiol Biotechnol, 37, 53-63
  25. Escoubet-Lozach L, Glass CK, Wasserman SI (2002) The role of transcription factors in allergic inflammation. J Allergy Clin Immunol, 110, 553-564 https://doi.org/10.1067/mai.2002.128076

Cited by

  1. Anti-Allergic Effect of 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose on RBL-2H3 Cells vol.45, pp.4, 2016, https://doi.org/10.3746/jkfn.2016.45.4.613
  2. The Anti-Inflammatory Effects of Picea wilsonii Mast on HaCaT Cells vol.48, pp.4, 2016, https://doi.org/10.15324/kjcls.2016.48.4.365
  3. Anti-allergic Effect of Ethanolic Extract of Flos Sophora japonica L. on Ca++Ionophore Stimulated Murine RBL-2H3 Cells vol.43, pp.3, 2014, https://doi.org/10.3746/jkfn.2014.43.3.349
  4. The Effect of the Polygonum tinctoria Niram on Atopic Dermatitis in DNCB-Induced Hairless Mice vol.22, pp.1, 2014, https://doi.org/10.14374/HFS.2014.22.1.141
  5. Antioxidative Activities and Quality Characteristics of Gruel as a Home Meal Replacement with Angelica keiskei Powder Pre-treated by Various Drying Methods vol.29, pp.1, 2014, https://doi.org/10.7318/KJFC/2014.29.1.091
  6. Study of Anti-atopic Dermatitis Effects of Juice of Raphanus sativus var in HaCaT Cell Line vol.32, pp.4, 2017, https://doi.org/10.7841/ksbbj.2017.32.4.311
  7. Anti-inflammatory Effects and Improving Atopic Dermatitis of Ethanol Extracts of Red Sea Cucumber vol.32, pp.4, 2017, https://doi.org/10.7841/ksbbj.2017.32.4.335
  8. 2,4-Dinitrochlorobenzene으로 유도된 BALB/c 마우스에서 Black currant seed oil의 아토피성 피부염 억제 효과 vol.29, pp.1, 2015, https://doi.org/10.15188/kjopp.2015.02.29.1.33
  9. 참모자반 물 추출물의 항아토피 효과 vol.43, pp.2, 2012, https://doi.org/10.4014/mbl.1504.04006
  10. 택사 (澤瀉, Alismatis Rhizoma) 추출물이 RBL-2H3 비만세포와 OVA/alum 감작 생쥐의 알레르기 염증 반응에 미치는 영향 vol.32, pp.3, 2012, https://doi.org/10.7778/jpkm.2018.32.3.001
  11. Alleviation of atopic dermatitis-related indications of the Lonicera japonica aqueous fraction produced by solid-state fermentation vol.26, pp.5, 2019, https://doi.org/10.11002/kjfp.2019.26.5.532