DOI QR코드

DOI QR Code

Antioxidant activities of licorice-derived prenylflavonoids

  • Kim, Hyo Jung (School of Applied Biosciences and Food Science and Biotechnology, BK21 research Team for Developing Functional Health Food Materials, Kyungpook National University) ;
  • Seo, Ji-Yeon (School of Applied Biosciences and Food Science and Biotechnology, BK21 research Team for Developing Functional Health Food Materials, Kyungpook National University) ;
  • Suh, Hwa-Jin (R&D Team, Gyeongbuk Natural Color Institute) ;
  • Lim, Soon Sung (Department of Food Science and Nutrition, Hallym University) ;
  • Kim, Jong-Sang (School of Applied Biosciences and Food Science and Biotechnology, BK21 research Team for Developing Functional Health Food Materials, Kyungpook National University)
  • Received : 2012.07.07
  • Accepted : 2012.10.18
  • Published : 2012.12.31

Abstract

Glycyrrhiza uralensis (or licorice) is a widely used Oriental herbal medicine from which the phenylflavonoids dehydroglyasperin C (DGC), dehydroglyasperin D (DGD), and isoangustone A (IsoA) are derived. The purpose of the present study was to evaluate the antioxidant properties of DGC, DGD, and IsoA. The three compounds showed strong ferric reducing activities and effectively scavenged DPPH, $ABTS^+$, and singlet oxygen radicals. Among the three compounds tested, DGC showed the highest free radical scavenging capacity in human hepatoma HepG2 cells as assessed by oxidant-sensitive fluorescent dyes dichlorofluorescein diacetate and dihydroethidium bromide. In addition, all three compounds effectively suppressed lipid peroxidation in rat tissues as well as $H_2O_2$-induced ROS production in hepatoma cells. This study demonstrates that among the three phenylflavonoids isolated from licorice, DGC possesses the most potent antioxidant activity, suggesting it has protective effects against chronic diseases caused by reactive oxygen species as well as potential as an antioxidant food additive.

Keywords

References

  1. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 2010;4:118-26. https://doi.org/10.4103/0973-7847.70902
  2. Hazra B, Biswas S, Mandal N. Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complement Altern Med 2008;8:63. https://doi.org/10.1186/1472-6882-8-63
  3. Halliwell B, Aeschbach R, Loliger J, Aruoma OI. The characterization of antioxidants. Food Chem Toxicol 1995;33:601-17. https://doi.org/10.1016/0278-6915(95)00024-V
  4. Lopez-Varela S, Gonzalez-Gross M, Marcos A. Functional foods and the immune system: a review. Eur J Clin Nutr 2002;56 Suppl 3:S29-33. https://doi.org/10.1038/sj.ejcn.1601481
  5. Veerapur VP, Prabhakar KR, Parihar VK, Kandadi MR, Ramakrishana S, Mishra B, Satish Rao BS, Srinivasan KK, Priyadarsini KI, Unnikrishnan MK. Ficus racemosa stem bark extract: apotent antioxidant and a probable natural radioprotector. Evid Based Complement Alternat Med 2009;6:317-24. https://doi.org/10.1093/ecam/nem119
  6. Mae T, Kishida H, Nishiyama T, Tsukagawa M, Konishi E, Kuroda M, Mimaki Y, Sashida Y, Takahashi K, Kawada T, Nakagawa K, Kitahara M. A licorice ethanolic extract with peroxisome proliferator-activated receptor-gamma ligand-binding activity affects diabetes in KK-Ay mice, abdominal obesity in diet-induced obese C57BL mice and hypertension in spontaneously hypertensive rats. J Nutr 2003;133:3369-77. https://doi.org/10.1093/jn/133.11.3369
  7. Fukai T, Marumo A, Kaitou K, Kanda T, Terada S, Nomura T. Anti-Helicobacter pylori flavonoids from licorice extract. Life Sci 2002;71:1449-63. https://doi.org/10.1016/S0024-3205(02)01864-7
  8. Kondo K, Shiba M, Yamaji H, Morota T, Zhengmin C, Huixia P, Shoyama Y. Species identification of licorice using nrDNA and cpDNA genetic markers. Biol Pharm Bull 2007;30:1497-502. https://doi.org/10.1248/bpb.30.1497
  9. Kuroda M, Mimaki Y, Sashida Y, Mae T, Kishida H, Nishiyama T, Tsukagawa M, Konishi E, Takahashi K, Kawada T, Nakagawa K, Kitahara M. Phenolics with PPAR-gamma ligand-binding activity obtained from licorice (Glycyrrhiza uralensis roots) and ameliorative effects of glycyrin on genetically diabetic KK-A(y) mice. Bioorg Med Chem Lett 2003;13:4267-72. https://doi.org/10.1016/j.bmcl.2003.09.052
  10. Hatano T, Shintani Y, Aga Y, Shiota S, Tsuchiya T, Yoshida T. Phenolic constituents of licorice. VIII. Structures of glicophenone and glicoisoflavanone, and effects of licorice phenolics on methicillin-resistant Staphylococcus aureus. Chem Pharm Bull (Tokyo) 2000;48:1286-92. https://doi.org/10.1248/cpb.48.1286
  11. Li J, Lim SS, Lee ES, Gong JH, Shin D, Kang IJ, Kang YH. Isoangustone A suppresses mesangial fibrosis and inflammation in human renal mesangial cells. Exp Biol Med (Maywood) 2011;236:435-44. https://doi.org/10.1258/ebm.2010.010325
  12. Seon MR, Park SY, Kwon SJ, Lim SS, Choi HJ, Park H, Lim DY, Kim JS, Lee CH, Kim J, Park JH. Hexane/ethanol extract of Glycyrrhiza uralensis and its active compound isoangustone A induce G1 cycle arrest in DU145 human prostate and 4T1 murine mammary cancer cells. J Nutr Biochem 2012;23:85-92. https://doi.org/10.1016/j.jnutbio.2010.11.010
  13. Seon MR, Lim SS, Choi HJ, Park SY, Cho HJ, Kim JK, Kim J, Kwon DY, Park JH. Isoangustone A present in hexane/ethanol extract of Glycyrrhiza uralensis induces apoptosis in DU145 human prostate cancer cells via the activation of DR4 and intrinsic apoptosis pathway. Mol Nutr Food Res 2010;54: 1329-39. https://doi.org/10.1002/mnfr.200900260
  14. Seo JY, Park J, Kim HJ, Lee IA, Lim JS, Lim SS, Choi SJ, Park JH, Kang HJ, Kim JS. Isoalantolactone from Inula helenium caused Nrf2-mediated induction of detoxifying enzymes. J Med Food 2009;12:1038-45. https://doi.org/10.1089/jmf.2009.0072
  15. Lee YS, Kim SH, Kim JK, Shin HK, Kang YH, Park JH, Lim SS. Rapid identification and preparative isolation of antioxidant components in licorice. J Sep Sci 2010;33:664-71. https://doi.org/10.1002/jssc.200900620
  16. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 1996;239:70-6. https://doi.org/10.1006/abio.1996.0292
  17. Hatano T, Kagawa H, Yasuhara T, Okuda T. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem Pharm Bull (Tokyo) 1988; 36:2090-7. https://doi.org/10.1248/cpb.36.2090
  18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999; 26:1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3
  19. Kim HJ, Suh HJ, Kim JH, Park S, Joo YC, Kim JS. Antioxidant activity of glyceollins derived from soybean elicited with Aspergillus sojae. J Agric Food Chem 2010;58:11633-8. https://doi.org/10.1021/jf102829z
  20. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 1999;27:612-6. https://doi.org/10.1016/S0891-5849(99)00107-0
  21. Li WG, Miller FJ Jr, Brown MR, Chatterjee P, Aylsworth GR, Shao J, Spector AA, Oberley LW, Weintraub NL. Enhanced H(2)O(2)-induced cytotoxicity in "epithelioid" smooth muscle cells: implications for neointimal regression. Arterioscler Thromb Vasc Biol 2000;20:1473-9. https://doi.org/10.1161/01.ATV.20.6.1473
  22. Rao AR, Sarada R, Baskaran V, Ravishankar GA. Antioxidant activity of Botryococcus braunii extract elucidated in vitro models. J Agric Food Chem 2006;54:4593-9. https://doi.org/10.1021/jf060799j
  23. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1978;52:302-10.
  24. Jadhav HR, Bhutani KK. Antioxidant properties of Indian medicinal plants. Phytother Res 2002;16:771-3. https://doi.org/10.1002/ptr.1063
  25. Shoemaker M, Hamilton B, Dairkee SH, Cohen I, Campbell MJ. In vitro anticancer activity of twelve Chinese medicinal herbs. Phytother Res 2005;19:649-51. https://doi.org/10.1002/ptr.1702
  26. Amagase H, Petesch BL, Matsuura H, Kasuga S, Itakura Y. Intake of garlic and its bioactive components. J Nutr 2001;131: 955S-962S. https://doi.org/10.1093/jn/131.3.955S
  27. Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 2011;82:1807-21. https://doi.org/10.1016/j.bcp.2011.07.093
  28. Gibellini L, Pinti M, Nasi M, Montagna JP, De Biasi S, Roat E, Bertoncelli L, Cooper EL, Cossarizza A. Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med 2011; 2011:591356.
  29. Higdon JV, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 2003;43:89-143. https://doi.org/10.1080/10408690390826464
  30. Davis JM, Murphy EA, Carmichael MD. Effects of the dietary flavonoid quercetin upon performance and health. Curr Sports Med Rep 2009;8:206-13. https://doi.org/10.1249/JSR.0b013e3181ae8959
  31. Cuendet M, Guo J, Luo Y, Chen S, Oteham CP, Moon RC, van Breemen RB, Marler LE, Pezzuto JM. Cancer chemopreventive activity and metabolism of isoliquiritigenin, a compound found in licorice. Cancer Prev Res (Phila) 2010;3:221-32. https://doi.org/10.1158/1940-6207.CAPR-09-0049
  32. Fu Y, Hsieh TC, Guo J, Kunicki J, Lee MY, Darzynkiewicz Z, Wu JM. Licochalcone-A, a novel flavonoid isolated from licorice root (Glycyrrhiza glabra), causes G2 and late-G1 arrests in androgen-independent PC-3 prostate cancer cells. Biochem Biophys Res Commun 2004;322:263-70. https://doi.org/10.1016/j.bbrc.2004.07.094
  33. Heikens J, Fliers E, Endert E, Ackermans M, van Montfrans G. Liquorice-induced hypertension--a new understanding of an old disease: case report and brief review. Neth J Med 1995;47:230-4. https://doi.org/10.1016/0300-2977(95)00015-5
  34. Sardi A, Geda C, Nerici L, Bertello P. Rhabdomyolysis and arterial hypertension caused by apparent excess of mineralocorticoids: a case report. Ann Ital Med Int 2002;17:126-9.
  35. Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 2008;22:709-24. https://doi.org/10.1002/ptr.2362
  36. Harborne JB. Nature, distribution and function of plant flavonoids. Prog Clin Biol Res 1986;213:15-24.

Cited by

  1. vol.19, pp.1, 2015, https://doi.org/10.1111/jcmm.12311
  2. Protective effects of dehydroglyasperin c against carbon tetrachloride-induced liver damage in mice vol.23, pp.2, 2014, https://doi.org/10.1007/s10068-014-0075-7
  3. Bioactivity and Potential Health Benefits of Licorice vol.62, pp.3, 2014, https://doi.org/10.1021/jf404939f
  4. HPLC–DAD–MS/MS identification and HPLC–ABTS·+ on-line antioxidant activity evaluation of bioactive compounds in liquorice (Glycyrrhiza uralensis Fisch.) extract vol.240, pp.5, 2015, https://doi.org/10.1007/s00217-014-2407-5
  5. spp. and Its Bioactive Constituents: Update and Review vol.29, pp.12, 2015, https://doi.org/10.1002/ptr.5487
  6. Dehydroglyasperin C suppresses TPA-induced cell transformation through direct inhibition of MKK4 and PI3K vol.55, pp.5, 2016, https://doi.org/10.1002/mc.22302
  7. Comparison of artemisinin content and antioxidant activity from various organs of Artemisia species vol.56, pp.5, 2015, https://doi.org/10.1007/s13580-015-0143-9
  8. Antioxidant Potential of Selected Korean Edible Plant Extracts vol.2017, pp.2314-6141, 2017, https://doi.org/10.1155/2017/7695605
  9. The anti-inflammatory activity of licorice, a widely used Chinese herb vol.55, pp.1, 2017, https://doi.org/10.1080/13880209.2016.1225775
  10. Investigating the antioxidant potential of licorice extracts obtained through different extraction modes pp.01458884, 2017, https://doi.org/10.1111/jfbc.12466
  11. Bu-Zhong-Yi-Qi pill alleviate the chemotherapy-related fatigue in 4 T1 murine breast cancer model vol.14, pp.None, 2012, https://doi.org/10.1186/1472-6882-14-497
  12. Hataedock Treatment Has Preventive Therapeutic Effects in Atopic Dermatitis-Induced NC/Nga Mice under High-Fat Diet Conditions vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/1739760
  13. Dehydroglyasperin D Inhibits the Proliferation of HT-29 Human Colorectal Cancer Cells Through Direct Interaction With Phosphatidylinositol 3-kinase vol.21, pp.1, 2012, https://doi.org/10.15430/jcp.2016.21.1.26
  14. C2C12 근아세포의 산화적 손상에 대한 고삼, 감초 및 백선피 복합 추출물의 보호효과 vol.25, pp.2, 2012, https://doi.org/10.14374/hfs.2017.25.2.179
  15. Effects of phytogenic feed additives on cellular oxidative stress and inflammatory reactions in intestinal porcine epithelial cells vol.96, pp.9, 2012, https://doi.org/10.1093/jas/sky263
  16. Mori Cortex Radicis Attenuates High Fat Diet-Induced Cognitive Impairment via an IRS/Akt Signaling Pathway vol.12, pp.6, 2012, https://doi.org/10.3390/nu12061851
  17. Quantitative Analysis of Flavonoids in Glycyrrhiza uralensis Fisch by 1 H-qNMR vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/6655572
  18. Glycyrrhiza Genus: Enlightening Phytochemical Components for Pharmacological and Health-Promoting Abilities vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/7571132
  19. Preparation and characterization of licorice root extract infused bio-composite film and their application on storage stability of chhana balls-a Sandesh like product vol.125, pp.None, 2012, https://doi.org/10.1016/j.foodcont.2021.107993
  20. Licorice (Glycyrrhiza glabra) Extracts-Suitable Pharmacological Interventions for COVID-19? A Review vol.10, pp.12, 2012, https://doi.org/10.3390/plants10122600