The Consequences of Mutations in the Reproductive Endocrine System

  • Choi, Donchan (Dept. of Life Science, College of Environmental Sciences, Yong-In University)
  • Received : 2012.11.04
  • Accepted : 2012.12.10
  • Published : 2012.12.31

Abstract

The reproductive activity in male mammals is well known to be regulated by the hypothalamus-pituitary-gonad axis. The hypothalamic neurons secreting gonadotropin releasing hormone (GnRH) govern the reproductive neuroendocrine system by integrating all the exogenous information impinging on themselves. The GnRH synthesized and released from the hypothalamus arrives at the anterior pituitary through the portal vessels, provoking the production of the gonadotropins(follicle-stimulating hormone (FSH) and luteinizing hormone (LH)) at the same time. The gonadotropins affect the gonads to promote spermatogenesis and to secret testosterone. Testosterone acts on the GnRH neurons by a feedback loop through the circulatory system, resulting in the balance of all the hormones by regulating reproductive activities. These hormones exert their effects by acting on their own receptors, which are included in the signal transduction pathways as well. Unexpected aberrants are arised during this course of action of each hormone. This review summarizes these abnormal phenomena, including various mutations of molecules and their actions related to the reproductive function.

Keywords

References

  1. Abel MH, Wootton AN, Wilkins V, Huhtaniemi I, Knight PG, Charlton HM (2000) The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology 141:1795-1803. https://doi.org/10.1210/en.141.5.1795
  2. Achard C, Courtillot C, Lahuna O, Méduri G, Soufir JC, Lière P, Bachelot A, Benyounes H, Schumacher M, Kuttenn F, Touraine P, Misrahi M (2009) Normal spermatogenesis in a man with mutant luteinizing hormone. N Engl J Med 361:1856-1863. https://doi.org/10.1056/NEJMoa0805792
  3. Aittomaki K, Herva R, Stenman UH, Juntunen K, Ylostalo P, Hovatta O, de la Chapelle A (1996) Clinical features of primary ovarian failure caused by a point mutation in the follicle-stimulating hormone receptor gene. J Clin Endocrinol Metab 81:3722-3726. https://doi.org/10.1210/jc.81.10.3722
  4. Aittomaki K, Lucena JL, Pakarinen P, Sistonen P, Tapanainen J, Gromoll J, Kaskikari R, Sankila EM, Lehvaslaiho H, Engel AR, Nieschlag E, Huhtaniemi I, de la Chapelle A (1995) Mutation in the folliclestimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell 82:959-968. https://doi.org/10.1016/0092-8674(95)90275-9
  5. Arnhold IJ, Lofrano-Porto A, Latronico AC (2009) Inactivating mutations of luteinizing hormone beta subunit or luteinizing hormone receptor cause oligoamenorrhea and infertility in women. Horm Res 71:75-82.
  6. Auger J, Faugeron I, Larue L, Lumbroso S, Themmen APN, Bouchard P (2008) A new LH receptor splice mutation responsible for male hypogonadism with subnormal sperm production in the propositus, and infertility with regular cycles in an affected sister. Human Reprod 23:1917-1923. https://doi.org/10.1093/humrep/den180
  7. Baker PJ, Pakarinen P, Huhtaniemi IT, Abel MH, Charlton HM, Kumar TR, O'Shaughnessy PJ (2003) Failure of normal Leydig cell development in follicle-stimulating hormone (FSH) receptor deficient mice, but not FSH beta-deficient mice: role for constitutive FSH receptor activity. Endocrinology 144:138-145. https://doi.org/10.1210/en.2002-220637
  8. Bardin CW, Bullock L, Schneider G, Allison JE, Stanley AJ (1970) Pseudohermaphrodite rat: end organ insensitivity to testosterone. Science 167:1136-1137. https://doi.org/10.1126/science.167.3921.1136
  9. Beau I, Tourraine P, Meduri G, Gougeon A, Desroches A, Matuchansky C, Milgrom E, Kuttenn F, Misrahi M (1998) A novel phenotype related to partial loss of function mutations of the follicle stimulating hormone receptor. J Clin Invest 102:1352-1359. https://doi.org/10.1172/JCI3795
  10. Bedecarrats GY, Kaiser UB (2007) Mutations in the human gonadotropin-releasing hormone receptor: insights into receptor biology and function. Semin Reprod Med 25:368-378. https://doi.org/10.1055/s-2007-984743
  11. Bedecarrats GY, Linher KD, Janovick JA, Beranova M, Kada F, Seminara SB, Michael CP, Kaiser UB (2003a) Four naturally occurring mutations in the human GnRH receptor affect ligand binding and receptor function. Mol Cell Endocrinol 205:51-64. https://doi.org/10.1016/S0303-7207(03)00201-6
  12. Bedecarrats GY, Linher KD, Kaiser UB (2003b) Two common naturally occurring mutations in the human gonadotropin-releasing hormone (GnRH) receptor have differential effects on gonadotropin gene expression and on GnRH-mediated signal transduction. J Clin Endocrinol Metab 88:834-843. https://doi.org/10.1210/jc.2002-020806
  13. Belchetz PE, Plant TM, Nakai Y, Keogh EJ, Knobil E (1978) Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropinreleasing hormone. Science 202:631-633. https://doi.org/10.1126/science.100883
  14. Beranova M, Oliveira LM, Bedecarrats GY, Schipani E, Vallejo M, Ammini AC, Quintos JB, Hall JE, Martin KA, Hayes FJ, Pitteloud N, Kaiser UB, Crowley WF Jr, Seminara SB (2001) Prevalence, phenotypic spectrum, and modes of inheritance of gonadotropin-releasing hormone receptor mutation in idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 86:1580-1588. https://doi.org/10.1210/jc.86.4.1580
  15. Berger K, Souza H, Brito VN, d'Alva CB, Mendonca BB, Latronico AC (2005) Clinical and hormonal features of selective follicle-stimulating hormone (FSH) deficiency due to FSH beta-subunit gene mutations in both sexes. Fertil Steril 83:466-470. https://doi.org/10.1016/j.fertnstert.2004.06.069
  16. Berrevoets CA, Doesburg P, Steketee K, Trapman J, Brinkman AO (1998) Functional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor 2). Mol Endocrinol 12:1172-1183. https://doi.org/10.1210/me.12.8.1172
  17. Binder H, Strick R, Zaherdoust O, Dittrich R, Hamori M, Beckmann MW, Oppelt PG (2012) Assessment of FSHR variants and anti-Müllerian hormone in infertility patients with a reduced ovarian response to gonadotropin stimulation. Fertil Steril 97:1169-1175. https://doi.org/10.1016/j.fertnstert.2012.02.012
  18. Bliss SP, Navratil AM, Xie J, Roberson MS (2010) GnRH signaling, the gonadotrope and endocrine control of fertility. Neuroendocrinology 31:322-340. https://doi.org/10.1016/j.yfrne.2010.04.002
  19. Bouligand J, Ghervan C, Tello JA, Brailly-Tabard S, Salenave S, Chanson P, Lombes M, Millar RP, Guiochon-Mantel A, Young J (2009) Isolated familial hypogonadotropic hypogonadism and a GnRH1 mutation. N Engl J Med 360:2742-2748. https://doi.org/10.1056/NEJMoa0900136
  20. Bremner WJ, Millar MR, Sharpe RM, Saunders PT (1994) Immunohistochemical localization of androgen receptors in the rat testis: evidence for stage-dependent expression and regulation by androgens. Endocrinology 135:1227-1234. https://doi.org/10.1210/en.135.3.1227
  21. Cheung LW, Wong AS (2008) Gonadotropin-releasing hormone: GnRH receptor signaling in extrapituitary tissues. FEBS J 275:5479-5495. https://doi.org/10.1111/j.1742-4658.2008.06677.x
  22. Chu J, Zhang R, Zhao Z, Zou W, Han Y, Qi Q, Zhang H, Wang JC, Tao S, Liu X, Luo Z (2002) Male fertility is compatible with an Arg840Cys substitution in the AR in a large Chinese family affected with divergent phenotypes of AR insensitivity syndrome. Clin Endocrinol Metab 87:347-351. https://doi.org/10.1210/jc.87.1.347
  23. Clarke IJ, Cummins JT (1984) Direct pituitary effects of estrogen and progesterone on gonadotropin secretion in the ovariectomized ewe. Neuroendocrinology 39:267-274. https://doi.org/10.1159/000123990
  24. Clarke IJ, Cummins JT, de Kretser DM (1983) Pituitary gland function after disconnection from direct hypothalamic influences in the sheep. Neuroendocrinology 36:376-384. https://doi.org/10.1159/000123484
  25. Costa EM, Bedecarrats GY, Mendonca BB, Arnhold IJ, Kaiser UB, Latronico AC (2001) Two novel mutations in the gonadotropin-releasing hormone receptor gene in Brazilian patients with hypogonadotropic hypogonadism and normal olfaction. J Clin Endocrinol Metab 86:2680-2686. https://doi.org/10.1210/jc.86.6.2680
  26. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 100:10972-10976. https://doi.org/10.1073/pnas.1834399100
  27. de Roux N, Young J, Misrahi M, Genet R, Chanson P, Schaison G, Milgrom E (1997) A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. N Engl J Med 337:1597-1602. https://doi.org/10.1056/NEJM199711273372205
  28. Dierich A, Sairam MR, Monaco L, Fimia GM, Gansmuller A, LeMeur M, Sassone-Corsi P (1998) Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci USA 95:13612-13617. https://doi.org/10.1073/pnas.95.23.13612
  29. Dode C, Levilliers J, Dupont JM, De Paepe A, Le Du N, Soussi-Yanicostas N, Coimbra RS, Delmaghani S, Compain-Nouaille S, Baverel F, Pecheux C, Le Tessier D, Cruaud C, Delpech M, Speleman F, Vermeulen S, Amalfitano A, Bachelot Y, Bouchard P, Cabrol S, Carel JC, Delemarre-van de Waal H, Goulet-Salmon B, Kottler ML, Richard O, Sanchez-Franco F, Saura R, Young J, Petit C, Hardelin JP (2003) Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet 33:463-465. https://doi.org/10.1038/ng1122
  30. Fichna P, Fichna M, Zurawek M, Nowak N (2011) Hypogonadotropic hypogonadism due to GnRH receptor mutation in a sibling. Pol J Endocrinol 62:264-267.
  31. Franco B, Guioli S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, Carrozzo R, Maestrini E, Pieretti M, Taillon-Miller P, Brown CJ, Willard HF, Lawrence C, Graziella Persico M, Camerino G, Ballabio A (1991) A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal pathfinding molecules. Nature 353:529-536. https://doi.org/10.1038/353529a0
  32. Franco B, Guioli S, Pragliola A, Incerti B, Bardoni B, Tonlorenzi R, Carrozzo R, Maestrini E, Pieretti M, Taillon-Miller P, Brown CJ, Willard HF, Lawrence C, Graziella Persico M, Camerino G, Ballabio A (1991) A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal pathfinding molecules. Nature 353:529-536. https://doi.org/10.1038/353529a0
  33. Galway AB, Hsueh AJ, Daneshdoost L, Zhou MH, Pavlou SN, Snyder PJ (1990) Gonadotroph adenomas in men produce biologically active follicle stimulating hormone. J Clin Endocrinol Metab 71:907-912. https://doi.org/10.1210/jcem-71-4-907
  34. Gerasimova T, Thanasoula MN, Zattas D, Seli E, Sakkas D, Lalioti MD (2010) Identification and in vitro characterization of follicle stimulating hormone (FSH) receptor variants associated with abnormal ovarian response to FSH. J Clin Endocrinol Metab 95:529-536. https://doi.org/10.1210/jc.2009-1304
  35. Ghadessy FJ, Lim J, Abdullah AAR, Panet-Raymond V, Choo CK, Lumbroso R, Tut TG, Gottlieb B, Pinsky L, Trifiro MA, Yong EL (1999) Oligospermic infertility associated with an androgen receptor mutation that disrupts interdomain and coactivator (TIF2) interactions. J Clin Invest 103:1517-1525. https://doi.org/10.1172/JCI4289
  36. Giwercman A, Kledal T, Schwartz M, Giwercman YL, Leffers H, Zazzi H, Wedell A, Skakkebaek NE (2000) Preserved male fertility despite decreased androgen sensitivity caused by a mutation in the ligand-binding domain of the androgen receptor gene. J Clin Endocrinol Metab 85:2253-2259. https://doi.org/10.1210/jc.85.6.2253
  37. Goglia U, Vinanzi C, Zuccarello D, Malpassi D, Ameri P, Casu M, Minuto F, Foresta C, Ferone D (2011) Identification of a novel mutation in exon 1 of androgen receptor gene in an azoospermic patient with mild androgen insensitivity syndrome: case report and literature review. Fertil Steril 2011 96:1165-1169.
  38. Goldstein JL, Wilson JD (1972) Studies on the pathogenesis of the pseudohermaphroditism in the mouse with testicular feminization. J Clin Invest 51:1647-1658. https://doi.org/10.1172/JCI106966
  39. Griffin JE (1992) Androgen resistance-the clinical and molecular spectrum. N Engl J Med 326:611-618. https://doi.org/10.1056/NEJM199202273260906
  40. Gromoll J, Simoni M, Nieschlag E (1996) An activating mutation of the follicle-stimulating hormone receptor autonomously sustains spermatogenesis in a hypophysectomized man. J Clin Endocrinol Metab 81:1367-1370. https://doi.org/10.1210/jc.81.4.1367
  41. Hardelin JP, Dode C (2008) The complex genetics of Kallman syndrome: KAL1, FGFR1, FGF8, PROKR2, PROK2, et al. Sex Dev 2:181-193. https://doi.org/10.1159/000152034
  42. Hardelin JP, Julliard AK, Moniot B, Soussi-Yanicostas N, Verney C, Chwanzel-Fukuda M, Ayer-Le Lievre C, Petit C (1999) Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis: implications for the developmental anomalies of X chromosome-linked Kallmann syndrome. Dev Dyn 215:26-44. https://doi.org/10.1002/(SICI)1097-0177(199905)215:1<26::AID-DVDY4>3.0.CO;2-D
  43. Haywood M, Spaliviero J, Jimemez M, King NJ, Handelsman DJ, Allan CM (2003) Sertoli and germ cell development in hypogonadal (hpg) mice expressing transgenic follicle-stimulating hormone alone or in combination with testosterone. Endocrinology 144:509-517. https://doi.org/10.1210/en.2002-220710
  44. Huhtaniemi I (2000) Mutations of gonadotrophin and gonadotrophin receptor genes: what do they teach us about reproductive physiology? J Reprod Fertil 119:173-186.
  45. Kendall SK, Gordon DF, Birkmeier TS, Petrey D, Sarapura VD, O'Shea KS, Wood WM, Lloyd RV, Ridgway EC, Camper SA (1994) Enhancer-mediated high level expression of mouse pituitary glycoprotein hormone alpha-subunit transgene in thyrotropes, gonadotropes, and developing pituitary gland. Mol Endocrinol 8:1420-1433. https://doi.org/10.1210/me.8.10.1420
  46. Kraaij R, Post M, Kremer H, Milgrom E, Epping W, Brunner HG, Grootegoed JA Themmen AP (1995) A missense mutation in the second transmembrane segment of the luteinizing hormone receptor causes familial male-limited precocious puberty. J Clin Endocrinol Metab 80:3168-3172. https://doi.org/10.1210/jc.80.11.3168
  47. Kumar TR (2007) Functional analysis of LH beta knockout mice. Mol Cell Endocrinol 269:81-84. https://doi.org/10.1016/j.mce.2006.10.020
  48. Kumar TR, Palapattu G, Wang P, Woodruff TK, Boime I, Byrne MC, Matzuk MM (1999) Transgenic models to study gonadotropin function: the role of folliclestimulating hormone in gonadal growth and tumorigenesis. Molecular Endocrinology 13:851-865. https://doi.org/10.1210/me.13.6.851
  49. Kumar TR, Wang Y, Lu N, Matzuk MM (1997) Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 15:201-204.
  50. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77-79. https://doi.org/10.1038/352077a0
  51. Laue L, Chan WY, Hsueh AJ, Kudo M, Hsu SY, Wu SM, Blomberg L, Cutler GB, Jr (1995) Genetic heterogeneity of constitutively activating mutations of the human luteinizing hormone receptor in familial male limited precocious puberty. Proc Nat'l Acad Sci USA 92:1906-1910. https://doi.org/10.1073/pnas.92.6.1906
  52. Layman LC, Cohen DP, Jin M, Xie J, Li Z, Reindollar RH, Bolbolan S, Bick DP, Sherins RR, Duck LW, Musgrove LC, Sellers JC, Neill JD (1998) Mutations in gonadotropin-releasing hormone receptor gene cause hypogonadotropic hypogonadism. Nat Genet 18:14-15. https://doi.org/10.1038/ng0198-14
  53. Layman LC, Lee EJ, Peak DB, Namnoum AB, Vu KV, van Lingen BL, Gray MR, McDonough PG, Reindollar RH, Jameson JL (1997) Delayed puberty and hypogonadism caused by mutations in the follicle-stimulating hormone beta-subunit gene. N Engl J Med 337:607-611. https://doi.org/10.1056/NEJM199708283370905
  54. Leanos-Miranda A, Janovick JA, Conn PM (2002) Receptormisrouting: an unexpectedly prevalent and rescuable etiology in gonadotropin-releasing hormone receptor-mediated hypogonadotropic hypogonadism. J Clin Endocrinol Metab 87:4825-4828. https://doi.org/10.1210/jc.2002-020961
  55. Legouis R, Hardelin JP, Levilliers J, Claverie JM, Compain S, Wunderle V, Millasseau P, Le Paslier D, Cohen D, Caterina D, Bougueleret L, Delemarre-Van de Waal H, Lutfalla G, Weissenbach J, Petit C, (1991) The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 67:423-435. https://doi.org/10.1016/0092-8674(91)90193-3
  56. Lei ZM, Mishra S, Zou W, Xu B, Foltz M, Li X, Rao CV (2001) Targeted disruption of luteinizing hormone/human chorionic gonadotropin receptor gene. Mol Endocrinol 15:184-200. https://doi.org/10.1210/me.15.1.184
  57. Ligtenberg MJ, Siers M, Themmen AP, Hanselaar TG, Willemsen W, Brunner HG (1999) Analysis of mutations in genes of the follicle stimulating hormone receptor signaling pathway in ovarian granulosa cell tumors. J Clin Endocrinol Metab 84:2233-2234. https://doi.org/10.1210/jc.84.6.2233
  58. Lim J, Ghadessy FJ, Abdullah AAR, Pinsky L, Trifiro M, Yong EL (2000) Human androgen receptor mutation disrupts ternary interactions between ligand, receptor domains, and the coactivator TIF2 (transcription intermediary factor). Mol Endocrinol 14:1187-1197. https://doi.org/10.1210/me.14.8.1187
  59. Lindstedt G, Nystrom E, Matthews C, Ernest I, Janson PO, Chatterjee K (1998) Follitropin (FSH) deficiency in an infertile male due to FSHbeta gene mutation. A syndrome of normal puberty and virilization but underdeveloped testicles with azoospermia, low FSH but high lutropin and normal serum testosterone concentrations. Clin Chem Lab Med 36:663-665.
  60. Liu G, Duranteau L, Carel J-C, Monroe J, Doyle DA, Shenker A (1999) Leydig-cell tumors caused by an activating mutation of the gene encoding the luteinizing hormone receptor. N Engl J Med 341:1731-1736. https://doi.org/10.1056/NEJM199912023412304
  61. Lyon MF, Hawkes SG (1970) X-linked gene for testicular feminization in the mouse. Nature 227:1217-1219. https://doi.org/10.1038/2271217a0
  62. Ma X, Dong Y, Matzuk MM, Kumar TR (2004) Targeted disruption of luteinizing hormone beta-subunit leads to hypogonadism, defects in gonadal steroidogenesis, and infertility. Proc Natl Acad Sci USA 101:17294-17299. https://doi.org/10.1073/pnas.0404743101
  63. Marshall JC, Kelch RP (1986) Gonadotropin-releasing hormone: role of pulsatile secretion in the regulation of reproduction. N Engl J Med 315:1459-1468. https://doi.org/10.1056/NEJM198612043152306
  64. Martens JWM, Verhoef-Post M, Abelin N, Ezabella M, Toledo SPA, Brunner HG, Themmen APN (1998) A homozygous mutation in the luteinizing hormone receptor causes partial Leydig cell hypoplasia: Correlation between receptor activity and phenotype. Molecular Endocrinol 12:775-784. https://doi.org/10.1210/me.12.6.775
  65. Mason AJ, Hayflick JS, Zoeller RT, Young WS III, Phillips HS, Nikolics K, Seeburg PH (1986a) A deletion truncating the gonadotropin-releasing hormone gene is responsible for hypogonadism in the hpg mouse. Science 234:1366-1371. https://doi.org/10.1126/science.3024317
  66. Mason AJ, Pitts SL, Nikolics K, Szonyi E, Wilcox JN, Seeburg PH, Stewart TA (1986b) The hypogonadal mouse: reproductive functions restored by gene therapy. Science 234:1372-1378. https://doi.org/10.1126/science.3097822
  67. Matsumoto T, Takeyama K, Sato T, Kato S (2003) Androgen receptor functions from reverse genetic models. J Steroid Biochem Mol Biol 85:95-99. https://doi.org/10.1016/S0960-0760(03)00231-0
  68. Matthews C, Chatterjee VK (1997) Isolated deficiency of follicle stimulating hormone re-revisited. N Engl J Med 337:642.
  69. Matthews CH, Borgato S, Beck-Peccoz P, Adams M, Tone Y, Gambino G, Casagrande S, Tedeschini G, Benedetti A, Chatterjee VK (1993) Primary amenorrhoea and infertility due to a mutation in the beta-subunit of follicle-stimulating hormone. Nature Genetics 5:83-86. https://doi.org/10.1038/ng0993-83
  70. McPhaul MJ (1999) Molecular defects of the androgen receptor. J Steroid Biochem Mol Biol 69:315-322. https://doi.org/10.1016/S0960-0760(99)00050-3
  71. Miura K, Acierno JS Jr, Seminara SB (2004) Characterization of the human nasal embryonic LHRH factor gene, NELF, and a mutation screening among 65 patients with idiopathic hypogonadotropic hypogonadism (IHH). J Hum Genet 49:265-268. https://doi.org/10.1007/s10038-004-0137-4
  72. Nilsson C, Jiang M, Pettersson K, Iitia A, Makela M, Simonsen H, Easteal S, Herrera RJ, Huhtaniemi I (1998) Determination of a common genetic variant of luteinizing hormone using DNA hybridization and immunoassays. Clin Endocrinol (Oxford) 49:369-376. https://doi.org/10.1046/j.1365-2265.1998.00532.x
  73. Nishimura R, Shin J, Ji I, Middaugh CR, Kruggel W, Lewis RV, Ji TH (1986) A single amino acid substitution in an ectopic alpha subunit of a human carcinoma choriogonadotropin. J Biol Chem 261:10475-10477.
  74. Okuda K, Yamada T, Imoto H, Komatsubara H, Sugimoto O (1994) Antigenic alteration of an anomalous human luteinizing hormone caused by two chorionic gonadotropin-type amino-acid substitutions. Biochem Biophys Res Comm 200:584-590. https://doi.org/10.1006/bbrc.1994.1488
  75. Petaja-Repo UE, Hogue M, Laperriere A, Bhalla S, Walker P, Bouvier M (2001) Newly synthesized human delta opioid receptors retained in the endoplasmic reticulum are retrotranslocated to the cytosol, degly-cosylated, ubiquitinated, and degraded by the proteasome. J Biol Chem 276:4416-4423. https://doi.org/10.1074/jbc.M007151200
  76. Pettersson K, Makela MM, Dahlen P, Lamminen T, Huoponen K, Huhtaniemi I (1994) Genetic polymorphism found in the LH beta gene of an immunologically anomalous variant of human luteinizing hormone. Europ J Endocrinol 130(Suppl) 2:65.
  77. Phillip M, Arbelle JE, Segev Y, Parvari R (1998) Male hypogonadism due to a mutation in the gene for the beta-subunit of follicle-stimulating hormone. N Engl J Med 338:1729-1732. https://doi.org/10.1056/NEJM199806113382404
  78. Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French FS (1995) Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev 16:271-321.
  79. Raivio T, Falardeau J, Dwyer A, Quinton R, Hayes FJ, Hughes VA, Cole LW, Pearce SH, Lee H, Boepple P, Crowley WF Jr, Pitteloud N (2007) Reversal of idiopathic hypogonadotropic hypogonadism. N Engl J Med 357:863-873. https://doi.org/10.1056/NEJMoa066494
  80. Rao CV (1996) The beginning of a new era in reproductive biology and medicine: expression of low levels of functional luteinizing hormone/human chorionic gonadotropin receptors in non-gonadal tissues. J Physiol Pharmacol 47(Suppl) 1:41-53.
  81. Risma KA, Clay CM, Nett TM, Wagner T, Yun J, Nilson JH (1995) Targeted overexpression of luteinizing hormone in transgenic mice leads to infertility, polycystic ovaries, and ovarian tumors. Proc Natl Acad Sci USA 92:1322-1326. https://doi.org/10.1073/pnas.92.5.1322
  82. Romero Y, Meikar O, Papaioannou MD, Conne B, Grey C, Weier M, Pralong F, De Massy B, Kaessmann H, Vassalli J-D, Kotaja N, Nef S (2011) Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS ONE 6:e25241. https://doi.org/10.1371/journal.pone.0025241
  83. Sar M, Lubahn DB, French FS, Wilson EM (1990) Immunohistochemical localization of the androgen receptor in rat and human tissues. Endocrinology 127:3180-3186. https://doi.org/10.1210/endo-127-6-3180
  84. Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770-774. https://doi.org/10.1038/35008096
  85. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O'Rahilly S, Carlton MB, Crowley WF Jr, Aparicio SA, Colledge WH (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614-1627. https://doi.org/10.1056/NEJMoa035322
  86. Semple RK, Topaloglu AK (2010) The recent genetics of hypogonadotropic hypogonadism-novel insights and new questions. Clin Endcorniol (Oxford) 72:427-435. https://doi.org/10.1111/j.1365-2265.2009.03687.x
  87. Shenker A, Laue L, Kosugi S, Merendino JJ, Jr, Minegishi T, Cutler GB Jr (1993) A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 365:652-654. https://doi.org/10.1038/365652a0
  88. Simoni M, Gromoll J, Höppner W, Kamischke A, Krafft T, Stahle D, Nieschlag E (1999) Mutational analysis of the follicle-stimulating hormone (FSH) receptor in normal and infertile men: identification and characterization of two discrete FSH receptor isoforms. J Clin Endocrinol Metab 84:751-755. https://doi.org/10.1210/jc.84.2.751
  89. Simoni M, Gromoll J, Nieschlag E (1997) The folliclestimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocrine Rev 18:739-773. https://doi.org/10.1210/er.18.6.739
  90. Singh J, Handelsman DJ (1996) The effects of recombinant FSH on testosterone-induced spermatogenesis in gonadotrophin-deficient (hpg) mice. J Androl 17:382-393.
  91. Tapanainen JS, Aittomaki K, Min J, Vaskivuo T, Huhtaniemi IT (1997) Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nature Genetics 15:205-206. https://doi.org/10.1038/ng0297-205
  92. Themmen APN, Huhtaniemi IT (2000) Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr Rev 21:551-583. https://doi.org/10.1210/er.21.5.551
  93. Topaloglu AK, Lu ZL, Farooqi IS, Mungan NO, Yuksel B, O'Rahilly S, Millar RP (2006) Molecular genetic analysis of normosmic hypogonadotropic hypogonadism in a Turkish population: identification and detailed functional characterization of a novel mutation in the gonadotropin-releasing hormone receptor gene. Neuroendocrinolgy 84:301-308.
  94. Tsutsumi R, Webster NJ (2009) GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocr J 56:729-737. https://doi.org/10.1507/endocrj.K09E-185
  95. Vornberger W, Prins G, Musto NA, Suarez-Quian CA (1994) Androgen receptor distribution in rat testis: new implications for androgen regulation of spermatogenesis. Endocrinology 134:2307-2316. https://doi.org/10.1210/en.134.5.2307
  96. Wang Q, Ghadessy FJ, Trounson A, de Kretser D, McLachlan R, Ng SC, Yong EL (1998) Azoospermia associated with a mutation in the ligand binding domain of an androgen receptor displaying normal ligand binding, but defective transactivation. J Clin Endocrinol Metab 83:4303-4309. https://doi.org/10.1210/jc.83.12.4303
  97. Wang R-S, Yeh S, Tzeng C-R, Chang C (2009) Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev 30:119-132. https://doi.org/10.1210/er.2008-0025
  98. Weiss J, Axelrod L, Whitcomb RW, Harris PE, Crowley WF, Jameson JL (1992) Hypogonadism caused by a single amino acid substitution in the beta subunit of luteinizing hormone. N Engl J Med 326:179-183. https://doi.org/10.1056/NEJM199201163260306
  99. Wintermantel TM, Campbell RE, Porteous R, Bock D, Grone HJ, Todman MG, Korach KS, Greiner E, Perez CA, Schutz G, Herbison AE (2006) Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin-releasing hormone neurons and fertility. Neuron 52:271-280. https://doi.org/10.1016/j.neuron.2006.07.023
  100. Wintermantel TM, Campbell RE, Porteous R, Bock D, Grone HJ, Todman MG, Korach KS, Greiner E, Perez CA, Schutz G, Herbison AE (2006) Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin-releasing hormone neurons and fertility. Neuron 52:271-280. https://doi.org/10.1016/j.neuron.2006.07.023
  101. Yeh S, Tsai MY, Xu Q, Mu XM, Lardy H, Huang KE, Lin H, Yeh SD, Altuwaijri S, Zhou X, Xing L, Boyce BF, Hung MC, Zhang S, Gan L, Chang C (2002) Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci USA 99:13498-13503. https://doi.org/10.1073/pnas.212474399
  102. Yong EL, Ng SC, Roy AC, Yun G, Ratnam SS (1994) Pregnancy after hormonal correction of severe spermatogenic defect due to mutation in androgen receptor gene. Lancet 344:826-827. https://doi.org/10.1016/S0140-6736(94)92385-X
  103. Zhang FP, Poutanen M, Wilbertz J, Huhtaniemi I (2001) Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol Endocrinol 15:172-183. https://doi.org/10.1210/me.15.1.172