DOI QR코드

DOI QR Code

Analysis of Transfer Rate on Listeria monocytogenes Contaminated Pork Meat During Processing

돈육 가공공정 중 돈육에 오염된 Listeria monocytogenes의 전이율 분석

  • Kim, Seong-Jo (Department of HACCP Promotion, Korea Health Industry Development Institute) ;
  • Kim, Gwang-Hee (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Park, Joong-Hyun (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Park, Bo-Geum (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Park, Myoung-Su (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Oh, Deog-Hwan (Department of Food Science and Biotechnology, Kangwon National University)
  • 김성조 (한국보건산업진흥원) ;
  • 김광희 (강원대학교 식품생명공학과) ;
  • 박중현 (강원대학교 식품생명공학과) ;
  • 박보금 (강원대학교 식품생명공학과) ;
  • 박명수 (강원대학교 식품생명공학과) ;
  • 오덕환 (강원대학교 식품생명공학과)
  • Received : 2012.07.24
  • Accepted : 2012.08.30
  • Published : 2012.12.31

Abstract

In this study, the transfer rate of wild type Listeria mon, ytogenes (LM) was investigated to establish the standard of safety management during pork meat pr, essing for meat to meat and meat to food contact surfaces contamination at 5 and $10^{\circ}C$. The transfer rate of LM from meat to meat during the pr, essing increased from 0.02% after 30 min to 0.42% after 120 min at $5^{\circ}C$, while for conveyor belt and stainless steel, it decreased from 0.015% and 0.013% after 30 min to 0.002% and 0.0003% after 120 min at $5^{\circ}C$, respectively (p < 0.05). When temperature increased to $10^{\circ}C$, the transfer rates of LM from meat to meat, conveyor belt and stainless steel were the highest at 60 min exposure, and all decreased after 120 min. In reverse, the transfer rate from food contact surface to pork meat was significantly higher than that from pork meat to food contact surface (p < 0.01). Also, the transfer rate to conveyor belt was significantly higher than stainless steel (p < 0.05) and it was highest at 30 min exposure time in both 5 and $10^{\circ}C$. This study indicates that the transfer and adherence rates of LM are influenced by the contact time and temperature. Consequently, these results were utilized to develop a predictive model with a high level of confidence which can lead to prevent cross-contamination during pork meat processing.

Wild type Listeria monocytogenes 균주에 오염된 돈육으로부터 다른 돈육, 컨베이어벨트, 스테인리스 스틸로 일정시간(30, 60, 120분)동안 접촉시킨 후 $5^{\circ}C$$10^{\circ}C$에서 각각의 전이율을 조하였다. $5^{\circ}C$에서 돈육에서 돈육으로 L. monocytogenes의 평균 전이율은 30분에서 120분으로 시간이 지남에 따라 0.02%에서 0.42%로 증가하였고, 평균 전이율은 0.284%로 나타났다. 돈육에서 컨베이어 벨트와 스테인리스 스틸로의 평균 전이율은 30분 후 각각 0.05%, 0.002%의 전이율을 나타냈으나 120분 후에는 더욱 감소하여 0.013%, 0.0003%를 나타내었다(p < 0.05). 두 조건 모두 30분에서 가장 높은 전이율을 보였으나 120분 후에는 감소하였다. $10^{\circ}C$에서 돈육, 컨베이어벨트, 스테인리스 스틸 모두 60분에서 가장 높은 전이율을 나타냈지만 120분에서는 감소하였다. 반면에 식품접촉면에서 돈육으로의 전이율은 돈육에서 식품접촉면으로의 전이율 보다 높게 나타났다(p < 0.01). 시간대별로는 30분이 가장 높았으며, 시간의 경과에 따라 감소하였고 컨베이어벨트가 스테인리스 스틸보다 전이율이 높았다(p < 0.05). 상기의 결과로부터 돈육 공정과정의 오염원에 대한 미생물학적 계량모델을 제시하여 예측모델을 검증한 결과, 대부분의 전이율 예측모델이 신뢰도가 높게 나타났으며, 개발된 예측 모델은 교차오염 발생을 예방할 수 있을 것으로 기대된다.

Keywords

References

  1. Kim, Y.G.: Consumption of meet and human health. J. East Asian Soc., The 2005 spring conference, pp. 21-34.
  2. Korea Meat Trade Association: Information of Meat Consumption. Available at: http://www.kmta.or.kr. (2011).
  3. 곽창근, 김태균, 박성훈, 장종근: 도축장 HACCP 제도의 경제적 타당성. 한국축산경영학회, 29, 1-17 (2002).
  4. Lee, J.Y., Suk, H.J., Paik, J.K., Hwang, H.S., Park, D.S., Paik, H.D. and Hong, W.S.: Analysis on the demands for HACCP system at meat retailors. Korean J. Food Sci. Ani. Resour., 32, 330-338 (2012). https://doi.org/10.5851/kosfa.2012.32.3.330
  5. Rho, M.J., Chung, M.S., Lee, J.H. and Park, J.Y.: Monitoring of microbial hazards at farms, slauhterhouses, and processing lines of swing in Korea. J. Food Prot., 64, 1388-1391 (2001).
  6. Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.A., Roy, S.L., Jones, J.L. and Griffin, P.M.: Foodborne illness acquired in the United States-Major pathogens. Emerg. Infect. Diseases, 17, 7-15 (2011). https://doi.org/10.3201/eid1701.P11101
  7. Kim, K.H., Kim, K.S. and Tak, R.B.: The Distribution of Salmonella in Mammals in Dalsung Park (Daegu) and Genetic Investigation of Isolates. Korean J. Vet. Public Health, 26, 31-37 (2002).
  8. Hwang, Y.M., Kwok, S.K., Kim, J.M., Yoon, H.S., Ju, J.H., Park, K.S., Park S.H. and Kim, H.Y.: Listeria monocytogenes meningitis presenting with bilateral abducens nerve palsy in a patient with systemic lupus erythematosus. J. Korean Rheum. Assoc., 16, 333-337 (2009). https://doi.org/10.4078/jkra.2009.16.4.333
  9. Gandhi, M. and Chikindas, M.L.: Listeria: A foodborne pathogen that knows how to survive. Inter. J. Food Microbiol., 113, 1-5 (2007). https://doi.org/10.1016/j.ijfoodmicro.2006.07.008
  10. Hong, C.H., Sim, W.C., and Oh, D.H.: Predictive Growth Model of Native Isolated Listeria monocytogenes on Raw Pork as a Function of Temperature and Time. Korean J. Food Sci. Technol., 37, 850-855 (2005).
  11. Doyle, M,P., Beuchat, L,R., and Montille, T,J. : Food Microbiology- Fundamentals and Frontiers. ASM press, (1997).
  12. Sammarco, M.A., Ripabelli, G., Ruberto, A., Iannitto, G. and Grasso, G.M.: Prevalence of Salmonella, Listeria, Yersinia in the Slaughterhouse Environment and on Work Surface, Equipment, and Workers. J. Food Prot., 60, 367-371 (1997).
  13. Kang, H.H., Kim, J.S., Suk, J.M., Lee, S.M. and Son, W.G.: Prevalence of Salmonella spp., Escherichia coli O157:H7 and Listeria monocytogenes in Fresh Feces and in Drinking Water of Feedlots. Korean J. Vet. Public Health, 22, 195-200 (1998).
  14. Perez-Rodriguez, R.,A., Carrasco, E., Garcia, R.M., and Zurera, G: Understanding and Modelling Bacterial Transfer to Foods; a review. Trends Food Sci. Technol., 19, 131-144 (2008). https://doi.org/10.1016/j.tifs.2007.08.003
  15. WHO (World Health Organisation): Surveillance Programme. Sixth Report of WHO Surveillance Programme for Control of Foodborne Infections and Intoxications in Europe. FAO/WHO Collaborating Centre for Research and Training in Food Hygiene and Zoonoses, Berlin (1995).
  16. Todo, E.C.D., Michaels, B.S., Greig, J.D., Smith, D. and Bartleson, C.A.: Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 8. Gloves as barriers to prevent contamination of food by workers. J. Food Prot., 73, 1762-1773 (2010).
  17. Kusumaningrum, H.D., Riboldi, G., Hazeleger, W.C., and Beumer, R.R.: Survival of Food-borne Pathogens on Stainless Steel Surfaces and Cross-contamination to Foods. Int. J. Food Microbiol., 85, 227-236 (2003). https://doi.org/10.1016/S0168-1605(02)00540-8
  18. Kim, S.J., Bahk, G.J., and Oh D.H. : Adherence Rate of Listeria monocytogenes Contaminated from Pork Meat during Pork Meat Processing. J. Fd Hyg. Safety, 22, 332-337 (2007).
  19. Schaffiner, D.W.: Models-what Comes after the Next Generation?. In: Modeling Microbial Responses in Food, McKellar, R. C. and Lu, X.(3eds), CRC Press, New York, USA. pp. 304-307 (2004).
  20. Hong, C.H. and Bahk, G.J.: Comparison of Cross-contamination of Salmonella spp. on Pork Meat and Workers' Hands during Pork Cutting Processing. Korean J. Food Sci. Ani. Resour., 28, 562-566 (2008). https://doi.org/10.5851/kosfa.2008.28.5.562
  21. Montville, R., Chen, Y. and Donal W.S.: Glove Barriers to Bacterial Cross-contamination between Hands to Food. J. Food Prot., 64, 845-849 (2001).
  22. SPSS. Statistical Package for Social Sciences for Windows. Rel. 10.0. SPSS Inc. Chicago, MD, USA. (1999).
  23. Jung, C.Y. and Choi, L.G. : SPSSWIN for Statistics Analysis, Ver. 10.0, 4th ed. Muyok Publishing Co., Seoul, Korea. pp. 276-283 (2002).
  24. Oscar, T.P.: Response Surface Models for Effects of Temperature, pH, and Previous Growth pH on Growth Kinetics of Salmonella Typhimurium in Brain Heart Infusion Broth. J. Food Prot., 62, 106-111 (1999).
  25. Junttila, J., Niemela, S. and Hirn, J. : Minimum Growth Temperatures of Listeria monocytogenes and non-haemolytic Listeria. J. Appl. Bacteriol., 65, 321-327 (1998).
  26. Midelet, G. and Carpentier, B.: Transfer of Microorganisms, Including Listeria monocytogenoes, from Various Materials to Beef. Appl. Environ. Microbiol.., 68, 4015-4024 (2002). https://doi.org/10.1128/AEM.68.8.4015-4024.2002
  27. Mafu, A.A., Roy, D., Goulet, J. and Magny, P.: Attachment of Listeria monocytogenes to stainless steel, glass, polypropylene, and rubber surfaces after short contact times. J. Food Prot., 53, 742-746 (1990).
  28. Dickson, J.S.: Transfer of Listeria monocytogenoes and salmonella Typhimurium between Beef Tissue Surfaces. J. Food Prot., 53, 51-53 (1990).
  29. Hong, J,H. and An, S,C.: Isolation and Serotyping of Listeria monocytogenes in Pork Fabrication Processing Environment. J. Fd. Hyg. Safety, 13, 425-429 (1998).
  30. Vatanyoopaisarn, S., Nazli, A., Christine E.R.D., Catherine E.D.R. and Will M.W.: Effect of Flagella on Initial Attachment of Listeria monocytogenoes to Stainless Steel. Appl. environ. Microbiol., 66, 860-863 (2000). https://doi.org/10.1128/AEM.66.2.860-863.2000
  31. Lunden, J.M., Maria K.M., Tiina, J.A. and Hannu J.K.: Persistent Listeria monocytogenes Strains Show Enhanced Adherence to Food Contact Surface after Short Contact Times. J. Food Prot., 63, 1204-1207 (2000).
  32. Kim, S.J., Park M.S., Bahk G.J., Rahman S.M.E., Park J.H. and Oh, D.H.: Transfer Rate of Cross Contamination of Listeria monocytogenoes between Pork Meat and Worker's Hands during Pork Meat Processing. J. Fd Hyg. Safety, 26, 330-335 (2011).
  33. Jimenez, M., Siller, J.H. and Valdez, J.B.: Bidirectional Salmonella enterica serovar Tphimurium Transfer between Bare/ Glove Hands Green Bell Pepper and its Interruptions. Int. J. Environ. Health Res., 17, 381-338 (2007). https://doi.org/10.1080/09603120701372664
  34. Gill, C,O. and Jones, T.: Effects of Wearing Knitted or Rubber Gloves on the Transfer of Escherichia coli between Hans and Meat. J. Food Prot., 65, 1045-1048 (2002).

Cited by

  1. Behavior of Campylobacter jejuni Biofilm Cells and Viable But Non-Culturable (VBNC) C. jejuni on Smoked Duck vol.45, pp.7, 2016, https://doi.org/10.3746/jkfn.2016.45.7.1041
  2. Biofilms on Food Contact Surfaces with Slightly Acidic Electrolyzed Water and the Risk of Biofilm Cells Transfer to Duck Meat vol.81, pp.4, 2018, https://doi.org/10.4315/0362-028X.JFP-17-373