The Anti-inflammatory Mechanism of Xanthoangelol E is Through the Suppression of NF-${\kappa}B$/Caspase-1 Activation in LPS-stimulated Mouse Peritoneal Macrophage

  • Seoa, Jung-Ho (Department of Cosmeceutical Science, Daegu Hanny University) ;
  • Kim, Su-Jin (Department of Cosmeceutical Science, Daegu Hanny University)
  • Received : 2012.10.20
  • Accepted : 2012.12.10
  • Published : 2012.12.31

Abstract

Angelica keiskei has exhibited numerous pharmacological effects including antitumor, antimetastatic, and antidiabetic effects. However, the anti-inflammatory effects and mechanisms employed by xanthoangelol E isolated from Angelica keiskei are incompletely understood. In this study, we attempted to determine the effects of Xanthoangelol E on the lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophage. The findings of this study demonstrated that xanthoangelol E inhibited the production of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and prostaglandin $E_2$ ($PGE_2$). Xanthoangelol E inhibited the enhanced levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) caused by LPS. Additionally, we showed that the anti-inflammatory effect of xanthoangelol E is through the regulation of the activation of nuclear factor (NF)-${\kappa}B$ and caspase-1. These results provide novel insights into the pharmacological actions of xanthoangelol E as a potential candidate for the development of new drugs to treat inflammatory diseases.

Keywords

References

  1. Adamson S, Leitinger N. Phenotypic modulation of macrophages in response to plaque lipids. Curr Opin Lipidol. 2011. 22: 335-342. https://doi.org/10.1097/MOL.0b013e32834a97e4
  2. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009. 183: 787-791. https://doi.org/10.4049/jimmunol.0901363
  3. Beutler B. Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol. 2000. 12: 20-26. https://doi.org/10.1016/S0952-7915(99)00046-1
  4. Bunikowski R, Gerhold K, Brautigam M, Hamelmann E, Renz H, Wahn U. Effect of low-dose cyclosporin a microemulsion on disease severity, interleukin-6, interleukin-8 and tumor necrosis factor alpha production in severe pediatric atopic dermatitis. Int Arch Allergy Immunol. 2001. 125: 344-348. https://doi.org/10.1159/000053836
  5. Bochenek G, Nizankowska E, Gielicz A, Swierczynska MM, Szczeklik A. Plasma 9alpha, 11beta-$PGF_2$, a PGD2 metabolite, as a sensitive marker of mast cell activation by allergen in bronchial asthma. Thorax. 2004. 59: 459-464. https://doi.org/10.1136/thx.2003.013573
  6. Crofford LJ, Oates JC, McCune WJ, Gupta S, Kaplan MJ, Catella-Lawson F, Morrow JD, McDonagh KT, Schmaier AH. Thrombosis in patients with connective tissue diseases treated with specific cyclooxygenase-2 inhibitors. A report of four cases. Arthritis Rheum. 2000. 43: 1891-1896. https://doi.org/10.1002/1529-0131(200008)43:8<1891::AID-ANR28>3.0.CO;2-R
  7. Druilhe A, Srinivasula SM, Razmara M, Ahmad M, Alnemri ES. Alnemri. Regulation of IL-1beta generation by Pseudo-ICE and ICEBERG, two dominant negative caspase recruitment domain proteins. Cell Death Differ. 2001. 8: 649-657. https://doi.org/10.1038/sj.cdd.4400881
  8. Eisenach JC, Curry R, Rauck R, Pan P, Yaksh TL. Role of spinal cyclooxygenase in human postoperative and chronic pain. Anesthesiology 2010. 112: 1225-1233. https://doi.org/10.1097/ALN.0b013e3181d94dc0
  9. Faubel S, Lewis EC, Reznikov L, Ljubanovic D, Hoke TS, Somerset H, Oh DJ, Lu L, Klein CL, Dinarello CA, Edelstein CL. Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther. 2007. 322: 8-15. https://doi.org/10.1124/jpet.107.119792
  10. Ghoshal S, Trivedi DB, Graf GA, Loftin CD. Cyclooxygenase-2 deficiency attenuates adipose tissue differentiation and inflammation in mice. J Biol Chem. 2011. 286: 889-898. https://doi.org/10.1074/jbc.M110.139139
  11. Guerreiro CS, Ferreira P, Tavares L, Santos PM, Neves M, Brito M, Cravo M. Fatty acids, IL6, and TNF-alpha polymorphisms: an example of nutrigenetics in Crohn's disease. Am J Gastroenterol. 2009. 104: 2241-2249. https://doi.org/10.1038/ajg.2009.313
  12. Humke EW, Shriver SK, Starovasnik MA, Fairbrother WJ, Dixit VM. ICEBERG: a novel inhibitor of interleukin-1beta generation. Cell. 2000. 103: 99-111. https://doi.org/10.1016/S0092-8674(00)00108-2
  13. Ishiguro K, Ando T, Maeda O, Hasegawa M, Kadomatsu K, Ohmiya N, Niwa Y, Xavier R, Goto H. Paeonolattenuates TNBS-induced colitis by inhibiting $NF-{\kappa}B $and STAT1 transactivation. Toxicol Appl Pharmacol. 2006. 217: 35-42. https://doi.org/10.1016/j.taap.2006.07.002
  14. Jeong HJ, Chung HS, An HJ, Seo SW, Kim TG, Won JH, Shin JY, Ahn KS, Kim HM. The immune-enhancing effect of the herbal combination Bouum-Myunyuk-Dan. Biol Pharm Bull. 2004. 27: 29-33. https://doi.org/10.1248/bpb.27.29
  15. Jobin C, Sartor RB. The $I{\kappa}B/NF-{\kappa}B $system: a key determinant of mucosal inflammation and protection. Am J Physiol-Cell Physiol. 2000. 278: C451-62. https://doi.org/10.1152/ajpcell.2000.278.3.C451
  16. Jones P, Lamdin R. Oral cyclo-oxygenase 2 inhibitors versus other oral analgesics for acute soft tissue injury: systematic review and meta-analysis. Clin Drug Investig. 2010. 30: 419-437. https://doi.org/10.2165/11533350-000000000-00000
  17. Kamei D, Yamakawa K, Takegoshi Y, Mikami-Nakanishi M, Nakatani Y, Oh-Ishi S, Yasui H, Azuma Y, Hirasawa N, Ohuchi K, Kawaguchi H, Ishikawa Y, Ishii T, Uematsu S, Akira S, Murakami M, Kudo I. Reduced pain hypersensitivity and inflammation in mice lacking microsomal prostaglandin e synthase-1. J Biol Chem. 2004. 279: 33684-33695. https://doi.org/10.1074/jbc.M400199200
  18. Kim SJ, Chung WS, Kim SS, Ko SG, Um JY. Antiinflammatory Effect of Oldenlandia diffusa and its Constituent, Hentriacontane, through Suppression of Caspase-1 Activation in Mouse Peritoneal Macrophages. Phytother Res. 2011. 25: 1537-1546. https://doi.org/10.1002/ptr.3443
  19. Lee SH, Stehlik C, Reed JC. Cop, a caspase recruitment domaincontaining protein and inhibitor of caspase-1 activation processing. J Biol Chem. 2001. 276: 34495-34500. https://doi.org/10.1074/jbc.M101415200
  20. Leiro JM, Alvarez E, Arranz JA, Cano E, Orallo F. Antioxidant activity and inhibitory effects of hydralazine on inducible NOS/COX-2 gene and protein expression in rat peritoneal macrophages. Int Immunopharmacol. 2004. 4: 163-177. https://doi.org/10.1016/j.intimp.2003.10.004
  21. Li H, Bradbury JA, Dackor RT, Edin ML, Graves JP, DeGraff LM, Wang PM, Bortner CD, Maruoka S, Lih FB, Cook DN, Tomer KB, Jetten AM, Zeldin DC. Cyclooxygenase-2 regulates Th17 cell differentiation during allergic lung inflammation. Am J Respir Crit Care Med. 2011. 184: 37-49. https://doi.org/10.1164/rccm.201010-1637OC
  22. Ma TY, Iwamoto Akotia V, Pedram A, Boivin MA, Said HM. TNF-${\alpha}$-induced increase in intestinal epithelial tight junction permeability requires $NF-{\kappa}B $ activation. Am J Physiol Gastrointest Liver Physiol. 2004. 286: G367-376. https://doi.org/10.1152/ajpgi.00173.2003
  23. Mastbergen SC, Marijnissen AC, Vianen ME, Zoer B, van Roermund PM, Bijlsma JW, Lafeber FP. Inhibition of COX-2 by celecoxib in the canine groove model of osteoarthritis. Rheumatol. 2006. 45: 405-413. https://doi.org/10.1093/rheumatology/kei187
  24. Mircic M, Kavanaugh A. Inhibition of IL6 in rheumatoid arthritis and juvenile idiopathic arthritis. Exp Cell Res. 2011. 317: 1286-1292. https://doi.org/10.1016/j.yexcr.2011.02.017
  25. Moudgil KD, Choubey D. Cytokines in autoimmunity: role in induction, regulation, and treatment. J Interferon Cytokine Res. 2011. 31: 695-703. https://doi.org/10.1089/jir.2011.0065
  26. Nagy G, Koncz A, Telarico T, Fernandez D, Ersek B, Buzas E, Perl A. Central role of nitric oxide in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther. 2010. 12: 210. https://doi.org/10.1186/ar3045
  27. Nishimoto N. Cytokine signal regulation and autoimmune disorders. Autoimmunity. 2005. 38: 359-367. https://doi.org/10.1080/08916930500124106
  28. Roberts PJ, Morgan K, Miller R, Hunter JO, Middleton SJ. Neuronal COX-2 expression in human myenteric plexus in active inflammatory bowel disease. Gut. 2001. 48: 468-472. https://doi.org/10.1136/gut.48.4.468
  29. Schoonbroodt S, Legrand-Poels S, Best-Belpomme M, Piette J. Activation of the NF-kappaB transcription factor in a T-lymphocytic cell line by hypochlorous acid. Biochem J. 1997. 321(Pt 3): 777-785. https://doi.org/10.1042/bj3210777
  30. Siegmund B, Lehr HA, Fantuzzi G, Dinarello CA. IL-1 betaconverting enzyme (caspase-1) in intestinal inflammation. Proc Natl Acad Sci USA. 2001. 98: 13249-13254. https://doi.org/10.1073/pnas.231473998
  31. Stark LA, Din FV, Zwacka RM, Dunlop MG. Aspirin-induced activation of the NF-kappaB signaling pathway: a novel mechanism for aspirin-mediated apoptosis in colon cancer cells. FASEB J. 2001. 15: 1273-1275. https://doi.org/10.1096/fj.00-0529fje
  32. Tak PP, Firestein GS. $NF-{\kappa}B$: a key role in inflammatory disease. J Clin Invest. 2001. 107: 7-11. https://doi.org/10.1172/JCI11830
  33. Tamayo E, Fernandez A, Almansa R, Carrasco E, Heredia M, Lajo C, Goncalves L, Gomez-Herreras JL, de Lejarazu RO, Bermejo-Martin JF. Pro- and anti-inflammatory responses are regulated simultaneously from the first moments of septic shock. Eur Cytokine Netw. 2011. 22: 82-87.
  34. Taxman DJ, Holley-Guthrie EA, Huang MT, Moore CB, Bergstralh DT, Allen IC, Lei Y, Gris D, Ting JP. The NLR adaptor ASC/ PYCARD regulates DUSP10, mitogen-activated protein kinase (MAPK), and chemokine induction independent of the inflammasome. J Biol Chem. 2011. 286: 19605-19616. https://doi.org/10.1074/jbc.M111.221077
  35. Ulmann L, Hirbec H, Rassendren F. P2X4 receptors mediate $PGE_2$ release by tissue-resident macrophages and initiate inflammatory pain. EMBO J. 2010. 29: 2290-2300. https://doi.org/10.1038/emboj.2010.126
  36. Wang X, Wang HY, Bryan EF, Zhang WH, Huo CF, Guan YJ, Zhang Y, Bruey JM, Reed JC, Friedlander RM. Dysregulation of receptor interacting protein-2 and caspase recruitment domain only protein mediates aberrant caspase-1 activation in Huntington's disease. J Neurosci. 2005. 25: 11645-11654. https://doi.org/10.1523/JNEUROSCI.4181-05.2005
  37. Woolley DE, Tetlow LC. Mast cell activation and its relation to proinflammatory cytokine production in the rheumatoid lesion. Arthritis Res. 2000. 2: 65-74. https://doi.org/10.1186/ar70