DOI QR코드

DOI QR Code

Assessment of Genetic Diversity and Fatty acid Composition of Perilla (Perilla frutescens var. frutescens) Germplasm

  • Received : 2012.10.19
  • Accepted : 2012.12.31
  • Published : 2012.12.31

Abstract

The objective of this study was to analyze the genetic diversity using SSR marker and investigate the fatty acid composition of perilla (P. frutescens var. frutescens) germplasm. Genetic diversity among 95 accessions, which consisted of 29 weedy types and 66 landrace accessions, was evaluated based on 12 SSR markers carrying 91 alleles. The mean values of observed ($H_O$) and expected heterozygosities ($H_E$) were 0.574 and 0.640, respectively, indicating a considerable amount of polymorphism within this collection. A genetic distance-based phylogeny grouped into two distinct groups, which were the landrace, moderate and weedy type, genetic distance (GD) value was 0.609. The physicochemical traits about crude oil contents and fatty acid compositions were analyzed using GC. Among tested germplasm, the total average oil contents (%) showed a range from 28.57 to 49.67 %. Five fatty acids and their contents in the crude oils are as follows: ${\alpha}$-linolenic acid (41.12%-51.81%), linoleic acid (15.38%-16.43%), oleic acid (18.93%-27.28%), stearic acid (2.56%-4.01%), and palmitic acid (7.38%-10.77%). The average oil content of wild types was lower than landrace, and the oil content of middle genotype accessions was higher than other germplasm, but no significant variation between landrace and wild types was shown. Nevertheless, IT117174, landrace of Korea, was highest in crude oil content (47.11%) and linolenic acid composition (64.58%) among the used germplasm. These traits of the selected accessions will be helped for new functional plant breeding in perilla crop.

Keywords

References

  1. Asif, M. 2011. Health effects of omega-3,6,9 fatty acids: Perilla frutescensis a good example of plant oils. Orient Pharm Exp. Med. 11:51-59. https://doi.org/10.1007/s13596-011-0002-x
  2. Christensen, S., R.V. Bothmer, G. Poulsen, L. Maggioni, M. Phillip, B.A. Andersen and R.B. Jorgensen. 2011. AFLP analysis of genetic diversity in leafy kale (Brassica oleracea L. convar. acephala ( DC.) Alef) landraces, cultivars and wild populations in Europe. Genet. Resour. Crop Evol. 58:657-666. https://doi.org/10.1007/s10722-010-9607-z
  3. DeWoody, J.A, R.L. Honeycutt and L.C. Skow. 1995. Microsatellite markers in white-tailed deer. J. Hered. 86: 317-319. https://doi.org/10.1093/oxfordjournals.jhered.a111593
  4. Ding, Y., M. Neo C, Y. Hu, L. Shi, C. Ma and Y.J. LIU. 2012. Characterization of fatty acid composition from five perilla seed oils in China and its relationship to annual growth temperature. J. Medicinal Plants Res. 6(9):1645-1651.
  5. Dixit, A., M.H. Jin, J.W. Chung, J.W. Yu, H.K. Chung, K.H. Ma, Y.J. Park and E.G. Cho. 2005. Development of polymorphic microsatellite markers in sesame (Sesamum indicum L.). Mol. Ecol. Notes 5:736-738. https://doi.org/10.1111/j.1471-8286.2005.01048.x
  6. Ganapathy, K.N., B.N. Gnanesh, M.B. Gowda, S.C. Venkatesha, S.S. Gomashe and V. Channamallikarjuna. 2011. AFLP analysis in pigeonpea (Cajamus cajan (L.) Millsp.) revealed close relationship of cultivated genotypes with some of its wild relatives. Genet. Resour. Crop Evol. 58:837-847. https://doi.org/10.1007/s10722-010-9621-1
  7. Gunstone, F.D., J. Harwood and F.B. Padley. 1994. The Lipid Handbook (2nd ed.), Chapman & Hall, London, UK.
  8. Ito, M., H. Kato, Y. Oka and G. Honda. 1998. Phylogenetic analysis of Japanese perilla species by using DNA Polymorphims. Nat. Med. 52(3):248-252.
  9. Ito, M., M. Toyoda and G. Honda. 1999. Chemical composition of essential oil of Perilla frutescens. Nat. Med. 53:32-36
  10. Ito, M., F. Kiuchi, L.L. Yang and G. Honda .2002. A new type of essential oil from Perilla frutescens from Thailand. J. Essent. Oil Res. 14:416-419 https://doi.org/10.1080/10412905.2002.9699907
  11. Kim, H.K., S, Choi and H. Choi. 2004. Suppression of hepatic fatty acid synthase by feeding a-linolenic acid rich Perilla oil lowers plasma triacyglycerol level in rats. J. Nutr. Biochem. 15: 485-492. https://doi.org/10.1016/j.jnutbio.2004.02.010
  12. Kopecky, J., M. Rossmeisl, P. Flachs, O. Kuda, P. Brauner, Z. Jilkova, B. Stankova, E. Tvrzicka and M. Bryhn. 2009. n-3 PUFA: Bioavailability and modulation of adipose tissue function. Proc. Nutr. Soc. 68(4):361-369. https://doi.org/10.1017/S0029665109990231
  13. Lee, J.K. and O. Ohnish. 2001. Geographic differentiation of morphological characters among perilla crops and their weedy types in East Asia. Breed Sci. 51:247-255. https://doi.org/10.1270/jsbbs.51.247
  14. Lee, J.K. and O. Ohnish. 2003. Genetic relationships among cultivated types of Perilla frutescens and their weedy types in East Asia revealed by AFLP markers. Genet. Resour. Crop Evol. 50:65-74. https://doi.org/10.1023/A:1022951002271
  15. Lee, J.K., M. Nitta, N.S. Kim, C.H. Park, K.M. Yoon, Y.B. Shin and O. Ohnishi. 2002. Genetic diversity of Perilla and related weedy types in Korea determined by AFLP analyses. Crop Sci. 42:2161-2166. https://doi.org/10.2135/cropsci2002.2161
  16. Lee, J.K., S.J. Kwon, B.J. Park, M.J. Kim, Y.J. Park, K.H. Ma, S.Y. Lee and J.H. Kim. 2007. Analysis of genetic diversity and relationships of cultivated and weedy types of Perilla frutescens collected from Korea by using microsatellite markers . Korean J. Genetics 29(1):81-87.
  17. Li, X.W. 1974. Flora Reipublicae Popularis Sinicae. Beijing: Sci. Press 65: 282-287.
  18. Liu, K. and S.V. Muse. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128-2129. https://doi.org/10.1093/bioinformatics/bti282
  19. Nitta M. and O. Ohnish. 1999. Genetic relationships among two perilla crops shiso and egoma and the weedy type revealed by RAPD markers. Genes Genet. Syst. 74: 43-48. https://doi.org/10.1266/ggs.74.43
  20. Nitta, M., J. K. Lee and O. Ohnishi. 2003. Asian Perilla crops and theie weedy from : their cultivation utilization and genetic relationships. Econ. Bot. 57:245-253. https://doi.org/10.1663/0013-0001(2003)057[0245:APCATW]2.0.CO;2
  21. Natta, M., J.K. Lee, C.W. Kang, M. Katsuta, S. Yasumoto, D. Liu, T. Nagamine and O. Ohnishi. 2005 The distribution of perilla species. Genet. Resour. Crop Evol. 52:797-840. https://doi.org/10.1007/s10722-003-6017-5
  22. Okamoto, M., F. Mitsunobu, K. Ashida, T. Mifune, Y. Hosaki, H. Tsugeno, S. Harada, Y. Tanizaki, M. Kataoka, K. Niiya and M. Harada. 2000. Effects of perilla seed oil supplementation on leukotriene generation by leucocytes in patients with asthma associated with lipometabolism. Int. Arch Allergy Immunol. 122(2):137-42. https://doi.org/10.1159/000024369
  23. Park, Y.J., A. Dixit, K.H. Ma, J.K. Lee and M.H. Lee. 2008. Evaluation of genetic diversity and relationships wothin an on-farm collection of Perilla frutescens (L.) Britt. using microsatellite markers. Genet. Resour. Crop Evol. 55:523-535. https://doi.org/10.1007/s10722-007-9258-x
  24. Peakall, R. and P.E. Smouse. 2006. GENEALEX 6; Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6:288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  25. Pritchard, J., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945-959.
  26. Pritchard, J.K. and W. Wen. 2004. Documentation for STRUCTURE software. The University of Chicago Press, Chicago, USA.
  27. Rao, N.K. 2004. Plant genetic resources: Advancing conservation and use through biotechnology. African J. Biotechnology 3(2):136-145.
  28. Russo, G.L. 2009. Dietary n-6 and n-3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochem. Pharmacol. 77(6): 937-946. https://doi.org/10.1016/j.bcp.2008.10.020
  29. Siriamornpun, S., D. Li, L. Yang, S. Suttajit and M. Suttajit. 2006. Variation of lipid and fatty acid compositions in Thai perilla seeds grown at different locations. J. Song Sci. Tech. 28:17-21.
  30. Verma, N., M.K. Rana, K.S. Negi, G. Kumar, K.V. Bhat, Y.J. Park and I.S. Bisht. 2010. Assessment of genetic diversity in Indian perilla [Perilla frutescens (L.) Britton] landraces using STMS markers. Indian J. Biotech. 9:43-49.
  31. Villa, T.C.C., N. Maxted, M. Scholten and B. Ford-Lloyd. 2006. Defining and identifying crop landraces. Plant Genet. Resour. 3:373-384.

Cited by

  1. Characterization of Perilla frutescens (Linn.) Britt based on morphological, biochemical and STMS markers vol.109, 2017, https://doi.org/10.1016/j.indcrop.2017.09.045
  2. Analysis of Fatty Acid Compositions and Biodiesel Properties of Seeds of Woody Oil Plants in Korea vol.26, pp.5, 2013, https://doi.org/10.7732/kjpr.2013.26.5.628
  3. EST-SSR Based Genetic Diversity and Population Structure among Korean Landraces of Foxtail Millet (Setaria italica L.) vol.29, pp.3, 2016, https://doi.org/10.7732/kjpr.2016.29.3.322
  4. Genetic diversity and population structure analysis in Perilla crop and their weedy types from northern and southern areas of China based on simple sequence repeat (SSRs) pp.2092-9293, 2018, https://doi.org/10.1007/s13258-018-0756-3
  5. Variation for Morphological Characters in Cultivated and Weedy Types of Perilla frutescens Britt. Germplasm vol.30, pp.3, 2012, https://doi.org/10.7732/kjpr.2017.30.3.298
  6. Assessment of Genetic Diversity and Population Structure on Kenyan Sunflower (Helianthus annus L.) Breeding Lines by SSR Markers vol.32, pp.3, 2012, https://doi.org/10.7732/kjpr.2019.32.3.244
  7. Identifying SSR Markers Related to Seed Fatty Acid Content in Perilla Crop (Perilla frutescens L.) vol.10, pp.7, 2012, https://doi.org/10.3390/plants10071404
  8. 들깨 대실/잎들깨1호 재조합 자식계통(RILs)의 농업적 특성 및 품질 분석 vol.66, pp.3, 2021, https://doi.org/10.7740/kjcs.2021.66.3.248