DOI QR코드

DOI QR Code

Change in Plant Growth and Physiologically-Active Compounds Content of Taraxacum officinale under Plastic House Condition

시설재배조건에서 서양민들레의 생육 및 생리활성물질 변이 연구

  • Chon, Sang-Uk (EFARINET Co. Ltd., BI Center, Chosun University) ;
  • Park, Jung-Suk (Department of Complementary Alternative Therapy, Kwangju Women's University)
  • 천상욱 (조선대학교 BI센터 (주)이파리넷) ;
  • 박정숙 (광주여자대학교 대체의학과)
  • Received : 2012.08.01
  • Accepted : 2012.09.19
  • Published : 2012.12.31

Abstract

Greenhouse and laboratory experiments were conducted to determine the effects of shade treatment and substrate components on plant growth and physiological activity of Taraxacum officinale. Substrates combined with coco peat and perlite (ratio 70 : 30 and 50 : 50, v/v) showed higher growth and yield than their single substrates (p<0.05). Shade treatment also significantly reduced plant height, root length, root diameter, leaf area, chlorophyll content, and fresh weight (p<0.05), compared to no shade. Contents of total phenolics [mg chlorogenic acid equivalents (CAE) $kg^{-1}$ DW] and total flavonoids [mg naringin equivalents $kg^{-1}$ DW] showed higher amounts in shoot parts than root parts of T. officinale, with shade than no shade. The antioxidant potential of the methanol extracts from the plants dose-dependently increased. DPPH (1,1-diphenyl-2-picryl hydrazyl radical) free radical scavenging activity was higher in leaf parts than in root parts of the plants, and no shade than with shade.

서양민들레의 시설생산을 위해 배지조성 및 차광정도를 달리한 환경조건에 대한 생육특성과 그에 따른 생리활성 변이를 검토하고자 온실과 실험실 시험을 수행하였다. 서양민들레 시설생산을 위한 적정한 배지조합은 coco peat와 perlite를 각각 70 : 30과 50 : 50으로 혼합한 배지가 coco peat와 perlite 각각의 단독배지보다 생육 및 수량에 있어서 유의적으로 높게 나타났다(p<0.05). 차광정도에 따른 서양민들레의 초장, 근장, 엽수, 근직경, 엽면적, 엽록소 함량 및 생체중은 무차광이 50%와 70%차광보다 유의적으로 높게 나타났다(p<0.05). 총 페놀 함량과 총 플라보노이드 함량은 지하부보다는 지상부에서 높게 나타났다. 총 페놀 함량은 무차광에서 차광보다 높게 검출되었고, 총 플라보노이드 함량은 50%차광에서 가장 높았고 그 다음이 무차광과 70%차광 순으로 높았다. 한편, DPPH 라디컬 소거능과 아질산염 측정을 통한 항산화성은 추출물 농도가 증가할수록 높은 활성을 보였고 지하부보다는 지상부에서, 차광보다는 무차광에서 높은 활성을 보였다.

Keywords

References

  1. Al-Saadawi, I. S., M. B. Arif, and A. J. Al-Rubeaa. 1985. Allelopathic effects of Citrus aurantium L. II. Isolation, characterization and biological activities of phytotoxins. J. Chem. Ecol. 11 : 1527-1534. https://doi.org/10.1007/BF01012198
  2. Balakumar, T., V. H. B. Vincent, and K. Paliwal. 1993. On the interaction of UV-B radiation (280-315 nm) with water stress in crop plants. Physiologia Plantarum. 87 : 217-222. https://doi.org/10.1111/j.1399-3054.1993.tb00145.x
  3. Bao, J. S., Y. Cai, M. Sun, G. Y. Wang, and H. Corke. 2005. Anthocyanins, flavonoids, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J. Agric. Food Chem. 53 : 2327-2332. https://doi.org/10.1021/jf048312z
  4. Bell, A. B. 1981. Biochemical mechanisms of disease resistance. Annu. Rev. Plant Physiol. 32 : 21-81. https://doi.org/10.1146/annurev.pp.32.060181.000321
  5. Blosi, M. S. 1958. Antioxidant determinations by use of a stable free radical. Nature. 26 : 1199-1200.
  6. Brand, M. H. 1997. Shade influences plant growth, leaf color, and chlorophyll content of Kalmia latifolia L. cultivar. HortScience. 32 : 206-208.
  7. Chon, S. U. 2006. Shade effect on growth and allelopathic potential of lettuce (Lactuca sativa L.) cultivars. Kor. J. Weed Sci. 26(3) : 270-278.
  8. Gray, J. I. and L. R. Jr. Dugan. 1975. Inhibition of N-nitrosamine formation in model food systems. J. Food Sci. 40 : 981-984. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  9. Ho, C., E. J. Choi, G. S. Yoo, K. M. Kim, and S. Y. Ryu. 1998. Desacetylmatricarin, an anti-allergic component from Taraxacum platycarpum. Planta Med. 64 : 577-578. https://doi.org/10.1055/s-2006-957520
  10. Hong, C. K., S. B. Bang, and J. S. Han. 1996. Effects of shading net on growth and yield of Aster scaber Thunb. and Ligularia fischeri Turez. RDA J. Agri. Sci. 38 : 462-467.
  11. Hu, C. and D. K. David. 2003. Antioxidant, prooxidant, and cytotoxic activities of solvent-fractionated dandelion (Taraxacum officinale) flower extracts in vitro. J. Agric. Food Chem. 51 : 301-310. https://doi.org/10.1021/jf0258858
  12. Ikeda, H. 1986. Nutrient solution management in view of nutrient requirement of crops. Agr. Hort. 61 : 205-211.
  13. Kotobuki, H., A. Akira, Y. Itaru, N. Shigehiko, H. Zen-ichi, and N. Ichiya. 1965. Antitumor avtivity of 4(or 5)- aminoimidazole-5(or 4)-carboxamide derivatives. GANN Japanese Journal of Cancer Research. 56(4) : 417-420.
  14. Lee, E. B., J. K. Kim, and O. K. Kim. 1993. The antigastritic effect of Taraxaci Herba. Kor. J. Pharmacogn. 24 : 313-318.
  15. Lee, Y. B. 1994. Hydroponics-High tech agricultural techniques in 21th century. pp. 62-65.
  16. Niemeyer, H. M. 1988. Hydroxamic acids (4-hydroxy-1,4- benzoxazin-3-ones), defence chemicals in the Gramineae. Phytochemistry. 27 : 3349-3358. https://doi.org/10.1016/0031-9422(88)80731-3
  17. SAS (Statistical Analysis Systems) Institute. 2000. SAS/STAT user's guide. Version 7. Electronic Version. Cary, NC, USA.
  18. Singleton, V. L. and J. A. Rossi. 1965. A colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16 : 144-158.
  19. Son, H. Y. and S. C. Chae. 2003. Effects of shading, potting media and plant growth retardant treatment on the growth and flowering of Spiranthes sinensis. Kor. J. Hort. Sci. Tech. 21 : 129-135.
  20. Takasaki, M., T. Konoshima, H. Tokuda, K. Masuda, Y. Arai, K. Shiojima, and H. Ageta. 1999a. Anti-carcinogenic activity of Taraxacum plant. I. Biol. Pharm. Bull. 22: 602-605. https://doi.org/10.1248/bpb.22.602
  21. Takasaki, M., T. Konoshima, H. Tokuda, K. Masuda, Y. Arai, K. Shiojima, and H. Ageta. 1999b. Anti-carcinogenic activity of Taraxacum plant. II. Biol. Pharm. Bull. 22 : 606-610. https://doi.org/10.1248/bpb.22.606

Cited by

  1. Influence of Plant Growth Regulator Application on Seed Germination of Dandelion (Taraxacum officinale) vol.2, pp.2, 2013, https://doi.org/10.5660/WTS.2013.2.2.152