DOI QR코드

DOI QR Code

국내외 수집종 구기자 잎과 줄기의 페놀화합물 함량

Determination of Total Content of Phenolic Compounds in Chinese Matrimony Vine's Accessions

  • 조진웅 (충남대학교 농업생명과학대학 식물자원학과) ;
  • 안태환 (충남대학교 농업생명과학대학 식물자원학과) ;
  • 이석영 (농촌진흥청 유전자원센터) ;
  • 박기웅 (충남대학교 농업생명과학대학 식물자원학과)
  • Cho, Jin-Woong (Department of Crop Science, College of Agricultural and Life Science, Chungnam National University) ;
  • An, Tae-Hwan (Department of Crop Science, College of Agricultural and Life Science, Chungnam National University) ;
  • Lee, Suk-Young (Genebank Information Center, National Academy of Agricultural Science, Rural Development Adminstration) ;
  • Park, Kee Woong (Department of Crop Science, College of Agricultural and Life Science, Chungnam National University)
  • 투고 : 2012.04.26
  • 심사 : 2012.11.20
  • 발행 : 2012.12.31

초록

본 연구는 우리나라에서 보존하고 있는 구기자(Lycium chinesis Miller) 유전자원 131점의 잎과 줄기를 에탄올로 추출한 후 페놀화합물의 함량을 측정하여 비교 분석하기 위하여 수행되었다. 구기자 잎의 페놀 함량은 $8.8{\sim}14.9mg\;g^{-1}$을 보였으며 $11.6{\sim}13.5mg\;g^{-1}$ 사이에는 약 60%의 유전자원이 분포되어 있었다. CB03286-89 유전자원은 총 페놀함량이 $14.9{\pm}0.3mg\;g^{-1}$으로 가장 높은 반면 CBP03310-250은 $8.8{\pm}0.2mg\;g^{-1}$으로 가장 낮은 함량을 보였다. 줄기에 대한 총 페놀함량은 $6.8{\sim}12.4mg\;g^{-1}$의 함량 범위를 보이고 있으며 잎보다는 상대적으로 다소 낮은 것으로 나타났다. 구기자 잎의 페놀화합물 중 33가지 물질을 정량 분석한 결과 China collection No.1에서 가장 높게 나타났으며 99797 수집종에서 가장 낮게 나타났다. (+)catechin 함량은 CB03286-89에서 가장 많았다. Myricetin은 Geumsan jaerae, Japan No.1, China collection No.1, CL32-13, CB04329-13, China collection No.12 그리고 CB03286-89 등에서 분석되었지만 나머지 구기자 유전자원의 잎에서는 검출되지 않았다. 줄기에 대한 페놀화합물은 잎에 비하여 상대적으로 함량이 적었으며 99797 수집종이 가장 많은 함량을 보였으나 CB04329-13에서는 가장 적은 함량을 보였다. (+)catechin 함량은 Japan No.1이 $231.0{\pm}0.5{\mu}g\;g^{-1}$으로 가장 높았으며, myricetin은 Japan No.1, China collection No.1, China collection No.12, CB03286-89 및 99797에서 분석되었지만 나머지 구기자 유전자원의 줄기에서는 검출되지 않았다.

This study was conducted to determine the variation of phenolic compounds in the leaf and stem of 131 accessions of Lycium chinesis Miller. The levels of total phenolic compounds in the leaf of L. chinesis ranged between 8.8 to $14.9mg\;g^{-1}$ and among them 60% of the accessions belong between 11.6 and $13.5mg\;g^{-1}$ for the content of phenolic compounds in the leaf. The accession CB03286-89 contained the highest total phenolic compounds among the accessions tested, which was 1.7-fold higher than that of the lowest content accession CBP03310-250. In the stem, the total phenolic compound of 131 accessions of L. chinesis ranged from 6.8 to $12.4mg\;g^{-1}$, showing slightly lower level than that in the leaf. The content of (+)catechin was highest in the leaf and stem of accession CB03286-89 and Japan No.1, respectively. Myricetin was detected in the leaf of seven accessions (i.e. Geumsan jaerae, Japan No.1, China collection No.1, CL32-13, CB04329-13, China collection No.12 and CB03286-89) and in the stem of five accessions (i.e., Japan No.1, China collection No.1, China collection No.12, CB03286-89 and 99797). Accessions had a great influence on the content of phenolic compounds. So, accessions-specific phenolic compound profiles might be helpful for commercial use or production of phenolic compounds in L. chinesis.

키워드

참고문헌

  1. An, T. H., S. Y. Lee, and J. W. Cho. 2012. Comparison on antioxidant activity of ethanolic extracts of Chinese Matrimony Vine (Lycium chinensis M.). Korean J. Crop Sci. 57 : 22-29. https://doi.org/10.7740/kjcs.2012.57.1.022
  2. Bais H. P., T. S. Walker, F. R. Stermitz, R. A. Hufbauer, and J. M. Vivanco. 2002. Enantiomeric-dependent phytotoxic and antimicrobial activity of (${\pm}$)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol. 128 (4) : 1173-1179. https://doi.org/10.1104/pp.011019
  3. Chung, I. M. 2004. Analysis Methods of Phenol Compounds. Korean J. Crop Sci. 10 : 5-12.
  4. Cuvelier, M. E., H. Richahard, and C. Berset. 1998. Antioxidative activity of phenolic compositin of pilot plant and comerical extracts of sage and rosemary. J. Am. Oil Chem. Soc. 73 : 645-652.
  5. Folin, O. and W. Denis. 1912. On phosphotungastic- phosphomolybdic compounds as color reagents. J. Biol. Chem. 12 : 239-249.
  6. Hertog, M., E. Feskens, and D. Kromhout. 1997. Antioxidant flavonols and coronary heart disease risk. Lancet. 349 : 699-705.
  7. Kim, D. K., D. M. Son, S. U. Chon, K. D. Lee, K. H. Kim, and Y. S. Rim. 2009. Phenolic compounds content and DPPH, ADH, ALDH acticities of Mungbean sprout based on growth temperature. Korean J. Crop Sci. 54 : 1-6.
  8. Kumar, A., P. Pant, S. Basu, G. Rao, and H. D. Khanna. 2006. Oxidative stress in neonatal hyperbilirubinemia. J.Tropical Pediatrics. 53 : 95-102.
  9. Namiki, M. 1990. Critical reviews in Food Sci. Nutr. 29 : 273-300.
  10. Park, J. S. 2000. Agronomic characteristics and biological activities of new variety of Cheongyang Gugija. Ph. D. Thesis. Chungnam National Univ.
  11. Rural Development Administration (RDA). 2009. Studies on the commercialization of chinese matrimony vine. RDA Research & Development Report. in Korean

피인용 문헌

  1. Quality and Antioxidant Properties of Gelatin Jelly Incorporated with Cranberry Concentrate vol.44, pp.7, 2015, https://doi.org/10.3746/jkfn.2015.44.7.1100
  2. Physicochemical Characteristics and Antioxidant Activities of Pu-erh Tea Jellies vol.33, pp.6, 2017, https://doi.org/10.9724/kfcs.2017.33.6.636
  3. Antioxidative and Antidiabetic Effects and Free Amino Acid Analysis of Drinks with Gugija (Lycii fructus) and Maegmundong (Liriope platyphylla) Extract Powders vol.34, pp.2, 2018, https://doi.org/10.9724/kfcs.2018.34.2.178
  4. Effects of Lemon and Cranberry Juice on the Quality of Chicken Thigh Meat during Cold Storage vol.45, pp.1, 2018, https://doi.org/10.5536/KJPS.2018.45.1.53
  5. Antioxidative and Antidiabetic Effects of Roasted Gugija (Lycii fructus) Extracts vol.33, pp.4, 2012, https://doi.org/10.9724/kfcs.2017.33.4.413
  6. A Tetraploid, Self-compatible Goji Berry (Lycium chinense Miller) Cultivar, ‘Whasu’, Adaptable to Rain Shelter Greenhouse vol.52, pp.2, 2012, https://doi.org/10.9787/kjbs.2020.52.2.165
  7. Physicochemical properties and antioxidant activities of spray-dried powder from safflower extract vol.28, pp.2, 2021, https://doi.org/10.11002/kjfp.2021.28.2.218