DOI QR코드

DOI QR Code

Prediction of spatial distribution of air pollutants within tunnel

터널 내 대기오염물질의 공간분포 예측

  • 박일건 (아주대학교 환경공학과) ;
  • 홍민선 (아주대학교 환경건설교통공학부) ;
  • 김범석 (아주대학교 환경공학과) ;
  • 강호근 (평화엔지니어링 기술연구원)
  • Received : 2012.10.26
  • Accepted : 2012.11.27
  • Published : 2012.11.30

Abstract

The need for management of tunnel air quality is imminent considering the rapid increase of number and span of tunnels in Korea. To investigate spatial distribution of $CO_2$ within tunnels, $CO_2$ were measured and model simulations were performed in Namsan 1 tunnel. Results show that $CO_2$ concentrations were 250 ppm to 400 ppm higher in the exit than tunnel entrance. Also, $CO_2$ concentrations were 200 ppm to 300 ppm lower inside no ventilating vehicle than in the tunnel. Both experimental and model simulation results show that spatial distribution and concentration gradient of air pollutant inside tunnel are highly dependent on traffic density.

지속적인 터널 건설의 증가는 터널 내 대기질 관리에 대한 필요성을 점증시키고 있어 측정 및 모델 모사를 통한 터널 내 대기질 거동에 대한 연구를 수행하였다. 남산1호 터널 입구와 출구의 $CO_2$ 농도차는 250 ppm~400 ppm으로 출구쪽이 높았으며 환기를 안 하는 차량 내부의 농도는 외부에 비해 200 ppm~300 ppm 낮게 측정되었다. 교통량이 적을 시 터널 내 유속은 빨라지며 일정한 농도 구배를 나타내고, 교통량이 증가하면 일정치 않은 농도 구배를 나타내는 것으로 나타났다.

Keywords

References

  1. Chih, M.M., Gui, B.H., Chang, T.C. (2011), "Influence of traffic flow patterns on air quality inside the longest tunnel in asia", Aerosol and Air Quality Research, Vol. 11, pp. 44-50.
  2. Kwon, S.B., Cho, Y.M., Park, D.S., Park, E.Y. (2006), "Correlation of $CO_{2}$ concentration with number of passengers and tunnel regions in the KTX cabin", The Korean Society for Railway (proceedings), Korea Maritime University, pp. 41-44.
  3. Lee, H.S., Hong, K.H., Choi, C.R., Kang, M.K., Lim, J.B., Mun, H.P. (2012), "Experimental study of improvement of ventilation efficiency at intersection in network-form underground road tunnel", Korean Tunnelling and Underground Space Association, Vol. 14, No. 2, pp. 107-116. https://doi.org/10.9711/KTAJ.2012.14.2.107
  4. Lew, J.O., Rie, D.H., Shin, H.J. (1999), "Study on optimization technique for design of the road tunnel ventilation system", Journal of KIIS, Vol. 14, No. 4, pp. 60-70.
  5. Lonneman, W.A., Selia, R.L., Meek, S.A. (1986), "Non-methane organic composition in the lincoln tunnel", Environmental Science & Technology, Vol. 20, No. 8, pp. 790-796. https://doi.org/10.1021/es00150a005
  6. Ministry of Land, Transport and Maritime Affairs (2011), "Rules on the basis of the road structure and facilities", Article 42.
  7. Pierson, W.R., Gertler, A.W., Robinson, N.F. (1996), "Real-world automotive emissions: Summary of studies in the Fort Mchenry and Tuscarora Mountain tunnels", Atmospheric Environment, Vol. 30, No. 12, pp. 2233-2256. https://doi.org/10.1016/1352-2310(95)00276-6
  8. Raf, D.F., Patrick, B., Jan, G.K. (1994), "Air pollution measurements in traffic tunnels", Environmental Health Perspectives, Vol. 102, suppl. 4, pp. 31-37. https://doi.org/10.1289/ehp.94102s731
  9. Seinfeld, J.H., Pandis, S.N. (1998), "Atmospheric chemistry and physics", Wiley-interscience publication, Ch. 23, pp. 1193-1200.