DOI QR코드

DOI QR Code

Assessment of Collagen-Induced Arthritis Using Cyanine 5.5 Conjugated with Hydrophobically Modified Glycol Chitosan Nanoparticles: Correlation with $^{18}F$-Fluorodeoxyglucose Positron Emission Tomography Data

  • Cha, Ji-Hyeon (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Lee, Sang-Hoon (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Lee, Sheen-Woo (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Park, Kyeong-Soon (Korea Institute of Science and Technology, Biomedical Research Center) ;
  • Moon, Dae-Hyuk (Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Kwang-Meyung (Korea Institute of Science and Technology, Biomedical Research Center) ;
  • Biswal, Sandip (Department of Radiology, Division of Musculoskeletal Imaging, Stanford University School of Medicine)
  • Published : 2012.08.01

Abstract

Objective: To evaluate the potential and correlation between near-infrared fluorescence (NIRF) imaging using cyanine 5.5 conjugated with hydrophobically modified glycol chitosan nanoparticles (HGC-Cy5.5) and $^{18}F$-fluorodeoxyglucose-positron emission tomography ($^{18}F$-FDG-PET) imaging of collagen-induced arthritis (CIA). Materials and Methods: We used 10 CIA and 3 normal mice. Nine days after the injecting collagen twice, microPET imaging was performed 40 minutes after the intravenous injection of 9.3 MBq $^{18}F$-FDG in 200 ${\mu}L$ PBS. One day later, NIRF imaging was performed two hours after the intravenous injection of HGC-cy5.5 (5 mg/kg). We assessed the correlation between these two modalities in the knees and ankles of CIA mice. Results: The mean standardized uptake values of $^{18}F$-FDG for knees and ankles were 1.68 ${\pm}$ 0.76 and 0.79 ${\pm}$ 0.71, respectively, for CIA mice; and 0.57 ${\pm}$ 0.17 and 0.54 ${\pm}$ 0.20 respectively for control mice. From the NIRF images, the total photon counts per 30 mm2 for knees and ankles were 2.32 ${\pm}$ 1.54 ${\times}10^5$ and 2.75 ${\pm}$ 1.51 ${\times}10^5$, respectively, for CIA mice, and 1.22 ${\pm}$ 0.27 ${\times}10^5$ and 0.88 ${\pm}$ 0.24 ${\times}10^5$, respectively, for control mice. These two modalities showed a moderate correlation for knees (r = 0.604, p = 0.005) and ankles (r = 0.464, p = 0.039). Moreover, both HGC-Cy5.5 (p = 0.002) and $^{18}F$-FDG-PET (p = 0.005) imaging also showed statistically significant differences between CIA and normal mice. Conclusion: NIRF imaging using HGC-Cy5.5 was moderately correlated with $^{18}F$-FDG-PET imaging in the CIA model. As such, HGC-Cy5.5 imaging can be used for the early detection of rheumatoid arthritis.

Keywords

References

  1. Sommer OJ, Kladosek A, Weiler V, Czembirek H, Boeck M, Stiskal M. Rheumatoid arthritis: a practical guide to stateof- the-art imaging, image interpretation, and clinical implications. Radiographics 2005;25:381-398 https://doi.org/10.1148/rg.252045111
  2. Wunder A, Straub RH, Gay S, Funk J, Muller-Ladner U. Molecular imaging: novel tools in visualizing rheumatoid arthritis. Rheumatology (Oxford) 2005;44:1341-1349 https://doi.org/10.1093/rheumatology/keh709
  3. Holmdahl R, Andersson ME, Goldschmidt TJ, Jansson L, Karlsson M, Malmström V, et al. Collagen induced arthritis as an experimental model for rheumatoid arthritis. Immunogenetics, pathogenesis and autoimmunity. APMIS 1989;97:575-584 https://doi.org/10.1111/j.1699-0463.1989.tb00446.x
  4. Williams RO. Collagen-induced arthritis as a model for rheumatoid arthritis. Methods Mol Med 2004;98:207-216
  5. Elzinga EH, van der Laken CJ, Comans EF, Lammertsma AA, Dijkmans BA, Voskuyl AE. 2-Deoxy-2-[F-18]fluoro-D-glucose joint uptake on positron emission tomography images: rheumatoid arthritis versus osteoarthritis. Mol Imaging Biol 2007;9:357-360 https://doi.org/10.1007/s11307-007-0113-4
  6. Beckers C, Ribbens C, André B, Marcelis S, Kaye O, Mathy L, et al. Assessment of disease activity in rheumatoid arthritis with (18)F-FDG PET. J Nucl Med 2004;45:956-964
  7. Brenner W. 18F-FDG PET in rheumatoid arthritis: there still is a long way to go. J Nucl Med 2004;45:927-929
  8. Hansch A, Frey O, Hilger I, Sauner D, Haas M, Schmidt D, et al. Diagnosis of arthritis using near-infrared fluorochrome Cy5.5. Invest Radiol 2004;39:626-632 https://doi.org/10.1097/01.rli.0000139008.04288.fd
  9. Fischer T, Gemeinhardt I, Wagner S, Stieglitz DV, Schnorr J, Hermann KG, et al. Assessment of unspecific near-infrared dyes in laser-induced fluorescence imaging of experimental arthritis. Acad Radiol 2006;13:4-13 https://doi.org/10.1016/j.acra.2005.07.010
  10. Chen WT, Mahmood U, Weissleder R, Tung CH. Arthritis imaging using a near-infrared fluorescence folate-targeted probe. Arthritis Res Ther 2005;7:R310-R317 https://doi.org/10.1186/ar1483
  11. Kas HS. Chitosan: properties, preparations and application to microparticulate systems. J Microencapsul 1997;14:689-711 https://doi.org/10.3109/02652049709006820
  12. Hansch A, Frey O, Sauner D, Hilger I, Haas M, Malich A, et al. In vivo imaging of experimental arthritis with near-infrared fluorescence. Arthritis Rheum 2004;50:961-967 https://doi.org/10.1002/art.20112
  13. Sugimoto K, Nishimoto N, Kishimoto T, Yoshizaki K, Nishimura T. Imaging of lesions in a murine rheumatoid arthritis model with a humanized anti-interleukin-6 receptor antibody. Ann Nucl Med 2005;19:261-266 https://doi.org/10.1007/BF02984617
  14. Frost H. Antibody-mediated side effects of recombinant proteins. Toxicology 2005;209:155-160 https://doi.org/10.1016/j.tox.2004.12.028
  15. Licha K, Hessenius C, Becker A, Henklein P, Bauer M, Wisniewski S, et al. Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes. Bioconjug Chem 2001;12:44-50 https://doi.org/10.1021/bc000040s
  16. Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol 2001;19:316-317 https://doi.org/10.1038/86684
  17. Kim JH, Kim YS, Park K, Kang E, Lee S, Nam HY, et al. Selfassembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials 2008;29:1920-1930 https://doi.org/10.1016/j.biomaterials.2007.12.038
  18. Park K, Kim JH, Nam YS, Lee S, Nam HY, Kim K, et al. Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles. J Control Release 2007;122:305-314 https://doi.org/10.1016/j.jconrel.2007.04.009
  19. Caesar J, Shaldon S, Chiandussi L, Guevara L, Sherlock S. The use of indocyanine green in the measurement of hepatic blood flow and as a test of hepatic function. Clin Sci 1961;21:43-57
  20. Brancato R, Trabucchi G. Fluorescein and indocyanine green angiography in vascular chorioretinal diseases. Semin Ophthalmol 1998;13:189-198 https://doi.org/10.3109/08820539809056052
  21. Licha K, Riefke B, Ntziachristos V, Becker A, Chance B, Semmler W. Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem Photobiol 2000;72:392-398 https://doi.org/10.1562/0031-8655(2000)072<0392:HCDACA>2.0.CO;2
  22. Storm G, Roerdink FH, Steerenberg PA, de Jong WH, Crommelin DJ. Influence of lipid composition on the antitumor activity exerted by doxorubicin-containing liposomes in a rat solid tumor model. Cancer Res 1987;47:3366-3372
  23. Takeuchi H, Kojima H, Toyoda T, Yamamoto H, Hino T, Kawashima Y. Prolonged circulation time of doxorubicinloaded liposomes coated with a modified polyvinyl alcohol after intravenous injection in rats. Eur J Pharm Biopharm 1999;48:123-129 https://doi.org/10.1016/S0939-6411(99)00029-6
  24. Hwang HY, Kim IS, Kwon IC, Kim YH. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release 2008;128:23- 31 https://doi.org/10.1016/j.jconrel.2008.02.003
  25. Weissleder R, Ntziachristos V. Shedding light onto live molecular targets. Nat Med 2003;9:123-128 https://doi.org/10.1038/nm0103-123
  26. Goerres GW, Forster A, Uebelhart D, Seifert B, Treyer V, Michel B, et al. F-18 FDG whole-body PET for the assessment of disease activity in patients with rheumatoid arthritis. Clin Nucl Med 2006;31:386-390 https://doi.org/10.1097/01.rlu.0000222678.95218.42
  27. Palmer WE, Rosenthal DI, Schoenberg OI, Fischman AJ, Simon LS, Rubin RH, et al. Quantification of inflammation in the wrist with gadolinium-enhanced MR imaging and PET with 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 1995;196:647- 655
  28. Bresnihan B. Pathogenesis of joint damage in rheumatoid arthritis. J Rheumatol 1999;26:717-719
  29. Andersson SE, Johansson A, Lexmuller K, Ekstrom GM. Physiological characterization of mBSA antigen induced arthritis in the rat. II. Joint blood flow, glucose metabolism, and cell proliferation. J Rheumatol 1998;25:1778-1784

Cited by

  1. Immuno-PET and Immuno-SPECT of Rheumatoid Arthritis with Radiolabeled Anti–Fibroblast Activation Protein Antibody Correlates with Severity of Arthritis vol.56, pp.5, 2012, https://doi.org/10.2967/jnumed.114.152959
  2. A critical evaluation of validity and utility of translational imaging in pain and analgesia: Utilizing functional imaging to enhance the process vol.84, pp.None, 2012, https://doi.org/10.1016/j.neubiorev.2017.08.004