DOI QR코드

DOI QR Code

Influence of Signal Intensity Non-Uniformity on Brain Volumetry Using an Atlas-Based Method

  • Goto, Masami (Department of Radiological Technology, University of Tokyo Hospital) ;
  • Abe, Osamu (Department of Radiology, Nihon University School of Medicine) ;
  • Miyati, Tosiaki (Graduate School of Medical Science, Kanazawa University) ;
  • Kabasawa, Hiroyuki (Japan Applied Science Laboratory, GE Healthcare) ;
  • Takao, Hidemasa (Department of Radiology, University of Tokyo Hospital) ;
  • Hayashi, Naoto (Department of Computational Diagnostic Radiology and Preventive Medicine, University of Tokyo Hospital) ;
  • Kurosu, Tomomi (Department of Radiological Technology, University of Tokyo Hospital) ;
  • Iwatsubo, Takeshi (Department of Neuropathology, University of Tokyo) ;
  • Yamashita, Fumio (Department of Radiology, National Center Hospital of Neurology and Psychiatry) ;
  • Matsuda, Hiroshi (Department of Nuclear Medicine, Saitama Medical University International Medical Center) ;
  • Mori, Harushi (Department of Radiology, University of Tokyo Hospital) ;
  • Kunimatsu, Akira (Department of Radiology, University of Tokyo Hospital) ;
  • Aoki, Shigeki (Department of Radiology, Juntendo University) ;
  • Ino, Kenji (Department of Radiological Technology, University of Tokyo Hospital) ;
  • Yano, Keiichi (Department of Radiological Technology, University of Tokyo Hospital) ;
  • Ohtomo, Kuni (Department of Radiology, University of Tokyo Hospital) ;
  • Japanese Alzheimer's Disease Neuroimaging Initiative, Japanese Alzheimer's Disease Neuroimaging Initiative (Japanese Alzheimer's Disease Neuroimaging Initiative)
  • Published : 2012.08.01

Abstract

Objective: Many studies have reported pre-processing effects for brain volumetry; however, no study has investigated whether non-parametric non-uniform intensity normalization (N3) correction processing results in reduced system dependency when using an atlas-based method. To address this shortcoming, the present study assessed whether N3 correction processing provides reduced system dependency in atlas-based volumetry. Materials and Methods: Contiguous sagittal T1-weighted images of the brain were obtained from 21 healthy participants, by using five magnetic resonance protocols. After image preprocessing using the Statistical Parametric Mapping 5 software, we measured the structural volume of the segmented images with the WFU-PickAtlas software. We applied six different bias-correction levels (Regularization 10, Regularization 0.0001, Regularization 0, Regularization 10 with N3, Regularization 0.0001 with N3, and Regularization 0 with N3) to each set of images. The structural volume change ratio (%) was defined as the change ratio (%) = (100 ${\times}$ [measured volume - mean volume of five magnetic resonance protocols] / mean volume of five magnetic resonance protocols) for each bias-correction level. Results: A low change ratio was synonymous with lower system dependency. The results showed that the images with the N3 correction had a lower change ratio compared with those without the N3 correction. Conclusion: The present study is the first atlas-based volumetry study to show that the precision of atlas-based volumetry improves when using N3-corrected images. Therefore, correction for signal intensity non-uniformity is strongly advised for multi-scanner or multi-site imaging trials.

Keywords

References

  1. Fox NC, Cousens S, Scahill R, Harvey RJ, Rossor MN. Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. Arch Neurol 2000;57:339-344 https://doi.org/10.1001/archneur.57.3.339
  2. Jack CR Jr, Shiung MM, Weigand SD, O'Brien PC, Gunter JL, Boeve BF, et al. Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 2005;65:1227-1231 https://doi.org/10.1212/01.wnl.0000180958.22678.91
  3. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 2003;19:1233-1239 https://doi.org/10.1016/S1053-8119(03)00169-1
  4. Gonoi W, Abe O, Yamasue H, Yamada H, Masutani Y, Takao H, et al. Age-related changes in regional brain volume evaluated by atlas-based method. Neuroradiology 2010;52:865-873 https://doi.org/10.1007/s00234-009-0641-5
  5. Rojas R, Rodríguez AO. Numerical study of the SNR and SAR of MRI coil arrays. Conf Proc IEEE Eng Med Biol Soc 2007;2007:1196-1199
  6. Simmons A, Tofts PS, Barker GJ, Arridge SR. Sources of intensity nonuniformity in spin echo images at 1.5 T. Magn Reson Med 1994;32:121-128 https://doi.org/10.1002/mrm.1910320117
  7. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998;17:87-97 https://doi.org/10.1109/42.668698
  8. Arnold JB, Liow JS, Schaper KA, Stern JJ, Sled JG, Shattuck DW, et al. Qualitative and quantitative evaluation of six algorithms for correcting intensity nonuniformity effects. Neuroimage 2001;13:931-943
  9. Leow AD, Klunder AD, Jack CR Jr, Toga AW, Dale AM, Bernstein MA, et al. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry. Neuroimage 2006;31:627-640 https://doi.org/10.1016/j.neuroimage.2005.12.013
  10. Vovk U, Pernus F, Likar B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 2007;26:405-421
  11. Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:839-851 https://doi.org/10.1016/j.neuroimage.2005.02.018
  12. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol 1987;149:351-356 https://doi.org/10.2214/ajr.149.2.351
  13. Jack CR Jr, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 2008;27:685-691 https://doi.org/10.1002/jmri.21049
  14. Schnack HG, van Haren NE, Hulshoff Pol HE, Picchioni M, Weisbrod M, Sauer H, et al. Reliability of brain volumes from multicenter MRI acquisition: a calibration study. Hum Brain Mapp 2004;22:312-320 https://doi.org/10.1002/hbm.20040
  15. van Haren NE, Cahn W, Hulshoff Pol HE, Schnack HG, Caspers E, Lemstra A, et al. Brain volumes as predictor of outcome in recent-onset schizophrenia: a multi-center MRI study. Schizophr Res 2003;64:41-52 https://doi.org/10.1016/S0920-9964(03)00018-5
  16. Turner JA, Smyth P, Macciardi F, Fallon JH, Kennedy JL, Potkin SG. Imaging phenotypes and genotypes in schizophrenia. Neuroinformatics 2006;4:21-49 https://doi.org/10.1385/NI:4:1:21
  17. Kruggel F, Turner J, Muftuler LT; Alzheimer's Disease Neuroimaging Initiative. Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort. Neuroimage 2010;49:2123-2133 https://doi.org/10.1016/j.neuroimage.2009.11.006
  18. Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT, et al. Sequence-independent segmentation of magnetic resonance images. Neuroimage 2004;23 Suppl 1:S69-S84
  19. Kruggel F. MRI-based volumetry of head compartments: normative values of healthy adults. Neuroimage 2006;30:1-11 https://doi.org/10.1016/j.neuroimage.2005.09.063
  20. Barnes J, Scahill RI, Boyes RG, Frost C, Lewis EB, Rossor CL, et al. Differentiating AD from aging using semiautomated measurement of hippocampal atrophy rates. Neuroimage 2004;23:574-581 https://doi.org/10.1016/j.neuroimage.2004.06.028
  21. Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage 2000;11:805-821 https://doi.org/10.1006/nimg.2000.0582
  22. Joo EY, Tae WS, Kim ST, Hong SB. Gray matter concentration abnormality in brains of narcolepsy patients. Korean J Radiol 2009;10:552-558 https://doi.org/10.3348/kjr.2009.10.6.552
  23. Thompson PM, Giedd JN, Woods RP, MacDonald D, Evans AC, Toga AW. Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 2000;404:190-193 https://doi.org/10.1038/35004593
  24. Shuter B, Yeh IB, Graham S, Au C, Wang SC. Reproducibility of brain tissue volumes in longitudinal studies: effects of changes in signal-to-noise ratio and scanner software. Neuroimage 2008;41:371-379 https://doi.org/10.1016/j.neuroimage.2008.02.003
  25. Ewers M, Teipel SJ, Dietrich O, Schönberg SO, Jessen F, Heun R, et al. Multicenter assessment of reliability of cranial MRI. Neurobiol Aging 2006;27:1051-1059 https://doi.org/10.1016/j.neurobiolaging.2005.05.032
  26. Jovicich J, Czanner S, Han X, Salat D, van der Kouwe A, Quinn B, et al. MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 2009;46:177-192 https://doi.org/10.1016/j.neuroimage.2009.02.010
  27. Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 2006;32:180- 194 https://doi.org/10.1016/j.neuroimage.2006.02.051
  28. Boyes RG, Gunter JL, Frost C, Janke AL, Yeatman T, Hill DL, et al. Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. Neuroimage 2008;39:1752-1762 https://doi.org/10.1016/j.neuroimage.2007.10.026
  29. Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, et al. Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage 2006;30:436-443 https://doi.org/10.1016/j.neuroimage.2005.09.046

Cited by

  1. Influence of Parameter Settings in Voxel-based Morphometry 8 : Using DARTEL and Region-of-interest on Reproducibility in Gray Matter Volumetry vol.54, pp.2, 2012, https://doi.org/10.3414/me14-01-0049
  2. Functional Brain Imaging with MR Scanner vol.73, pp.11, 2017, https://doi.org/10.6009/jjrt.2017_jsrt_73.11.1149
  3. Combining Segmented Grey and White Matter Images Improves Voxel-based Morphometry for the Case of Dilated Lateral Ventricles vol.17, pp.4, 2012, https://doi.org/10.2463/mrms.mp.2017-0127
  4. Depressive symptoms in Parkinson’s disease are related to decreased left hippocampal volume: correlation with the 15-item shortened version of the Geriatric Depression Scale vol.59, pp.3, 2012, https://doi.org/10.1177/0284185117719100
  5. SPMを用いたVBM解析における技術的注意点 vol.39, pp.4, 2012, https://doi.org/10.2463/jjmrm.2019-1678
  6. Neuroharmony: A new tool for harmonizing volumetric MRI data from unseen scanners vol.220, pp.None, 2012, https://doi.org/10.1016/j.neuroimage.2020.117127
  7. Influence of Mild White Matter Lesions on Voxel-based Morphometry vol.20, pp.1, 2021, https://doi.org/10.2463/mrms.mp.2019-0154