DOI QR코드

DOI QR Code

Imaging-Based Tumor Treatment Response Evaluation: Review of Conventional, New, and Emerging Concepts

  • Kang, Hee (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Ho-Yun (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Kyung-Soo (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Jae-Hun (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Published : 2012.08.01

Abstract

Tumor response may be assessed readily by the use of Response Evaluation Criteria in Solid Tumor version 1.1. However, the criteria mainly depend on tumor size changes. These criteria do not reflect other morphologic (tumor necrosis, hemorrhage, and cavitation), functional, or metabolic changes that may occur with targeted chemotherapy or even with conventional chemotherapy. The state-of-the-art multidetector CT is still playing an important role, by showing high-quality, high-resolution images that are appropriate enough to measure tumor size and its changes. Additional imaging biomarker devices such as dual energy CT, positron emission tomography, MRI including diffusion-weighted MRI shall be more frequently used for tumor response evaluation, because they provide detailed anatomic, and functional or metabolic change information during tumor treatment, particularly during targeted chemotherapy. This review elucidates morphologic and functional or metabolic approaches, and new concepts in the evaluation of tumor response in the era of personalized medicine (targeted chemotherapy).

Keywords

References

  1. Ratain MJ, Eckhardt SG. Phase II studies of modern drugs directed against new targets: if you are fazed, too, then resist RECIST. J Clin Oncol 2004;22:4442-4445 https://doi.org/10.1200/JCO.2004.07.960
  2. Rosner GL, Stadler W, Ratain MJ. Randomized discontinuation design: application to cytostatic antineoplastic agents. J Clin Oncol 2002;20:4478-4484 https://doi.org/10.1200/JCO.2002.11.126
  3. Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer 1981;47:207-214 https://doi.org/10.1002/1097-0142(19810101)47:1<207::AID-CNCR2820470134>3.0.CO;2-6
  4. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000;92:205-216 https://doi.org/10.1093/jnci/92.3.205
  5. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228-247 https://doi.org/10.1016/j.ejca.2008.10.026
  6. van Persijn van Meerten EL, Gelderblom H, Bloem JL. RECIST revised: implications for the radiologist. A review article on the modified RECIST guideline. Eur Radiol 2010;20:1456- 1467 https://doi.org/10.1007/s00330-009-1685-y
  7. Scher HI, Morris MJ, Kelly WK, Schwartz LH, Heller G. Prostate cancer clinical trial end points: "RECIST"ing a step backwards. Clin Cancer Res 2005;11:5223-5232 https://doi.org/10.1158/1078-0432.CCR-05-0109
  8. Nowak AK. CT, RECIST, and malignant pleural mesothelioma. Lung Cancer 2005;49 Suppl 1:S37-S40
  9. Byrne MJ, Nowak AK. Modified RECIST criteria for assessment of response in malignant pleural mesothelioma. Ann Oncol 2004;15:257-260 https://doi.org/10.1093/annonc/mdh059
  10. van Klaveren RJ, Aerts JG, de Bruin H, Giaccone G, Manegold C, van Meerbeeck JP. Inadequacy of the RECIST criteria for response evaluation in patients with malignant pleural mesothelioma. Lung Cancer 2004;43:63-69 https://doi.org/10.1016/S0169-5002(03)00292-7
  11. Therasse P, Eisenhauer EA, Verweij J. RECIST revisited: a review of validation studies on tumour assessment. Eur J Cancer 2006;42:1031-1039 https://doi.org/10.1016/j.ejca.2006.01.026
  12. Gopinath G, Ahmed A, Buscombe JR, Dickson JC, Caplin ME, Hilson AJ. Prediction of clinical outcome in treated neuroendocrine tumours of carcinoid type using functional volumes on 111In-pentetreotide SPECT imaging. Nucl Med Commun 2004;25:253-257 https://doi.org/10.1097/00006231-200403000-00007
  13. Barnacle AM, McHugh K. Limitations with the response evaluation criteria in solid tumors (RECIST) guidance in disseminated pediatric malignancy. Pediatr Blood Cancer 2006;46:127-134 https://doi.org/10.1002/pbc.20344
  14. Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 2001;35:421-430 https://doi.org/10.1016/S0168-8278(01)00130-1
  15. Varela M, Real MI, Burrel M, Forner A, Sala M, Brunet M, et al. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol 2007;46:474-481 https://doi.org/10.1016/j.jhep.2006.10.020
  16. Lencioni R, Cioni D, Crocetti L, Franchini C, Pina CD, Lera J, et al. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. Radiology 2005;234:961-967 https://doi.org/10.1148/radiol.2343040350
  17. Sala M, Llovet JM, Vilana R, Bianchi L, Solé M, Ayuso C, et al. Initial response to percutaneous ablation predicts survival in patients with hepatocellular carcinoma. Hepatology 2004;40:1352-1360 https://doi.org/10.1002/hep.20465
  18. Llovet JM, Real MI, Montana X, Planas R, Coll S, Aponte J, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 2002;359:1734-1739 https://doi.org/10.1016/S0140-6736(02)08649-X
  19. Riaz A, Kulik L, Lewandowski RJ, Ryu RK, Giakoumis Spear G, Mulcahy MF, et al. Radiologic-pathologic correlation of hepatocellular carcinoma treated with internal radiation using yttrium-90 microspheres. Hepatology 2009;49:1185- 1193 https://doi.org/10.1002/hep.22747
  20. Forner A, Ayuso C, Varela M, Rimola J, Hessheimer AJ, de Lope CR, et al. Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma: are response evaluation criteria in solid tumors reliable? Cancer 2009;115:616-623 https://doi.org/10.1002/cncr.24050
  21. Sleijfer S, Wiemer E, Verweij J. Drug Insight: gastrointestinal stromal tumors (GIST)--the solid tumor model for cancerspecific treatment. Nat Clin Pract Oncol 2008;5:102-111 https://doi.org/10.1038/ncponc1037
  22. Choi H, Charnsangavej C, de Castro Faria S, Tamm EP, Benjamin RS, Johnson MM, et al. CT evaluation of the response of gastrointestinal stromal tumors after imatinib mesylate treatment: a quantitative analysis correlated with FDG PET findings. AJR Am J Roentgenol 2004;183:1619-1628 https://doi.org/10.2214/ajr.183.6.01831619
  23. Choi H, Charnsangavej C, Faria SC, Macapinlac HA, Burgess MA, Patel SR, et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol 2007;25:1753- 1759 https://doi.org/10.1200/JCO.2006.07.3049
  24. Choi H. Response evaluation of gastrointestinal stromal tumors. Oncologist 2008;13 Suppl 2:4-7
  25. Chun YS, Vauthey JN, Boonsirikamchai P, Maru DM, Kopetz S, Palavecino M, et al. Association of computed tomography morphologic criteria with pathologic response and survival in patients treated with bevacizumab for colorectal liver metastases. JAMA 2009;302:2338-2344 https://doi.org/10.1001/jama.2009.1755
  26. van der Veldt AA, Meijerink MR, van den Eertwegh AJ, Haanen JB, Boven E. Choi response criteria for early prediction of clinical outcome in patients with metastatic renal cell cancer treated with sunitinib. Br J Cancer 2010;102:803-809 https://doi.org/10.1038/sj.bjc.6605567
  27. Smith AD, Lieber ML, Shah SN. Assessing tumor response and detecting recurrence in metastatic renal cell carcinoma on targeted therapy: importance of size and attenuation on contrast-enhanced CT. AJR Am J Roentgenol 2010;194:157- 165 https://doi.org/10.2214/AJR.09.2941
  28. Smith AD, Shah SN, Rini BI, Lieber ML, Remer EM. Morphology, Attenuation, Size, and Structure (MASS) criteria: assessing response and predicting clinical outcome in metastatic renal cell carcinoma on antiangiogenic targeted therapy. AJR Am J Roentgenol 2010;194:1470-1478 https://doi.org/10.2214/AJR.09.3456
  29. Sandler AB, Schiller JH, Gray R, Dimery I, Brahmer J, Samant M, et al. Retrospective evaluation of the clinical and radiographic risk factors associated with severe pulmonary hemorrhage in first-line advanced, unresectable non-smallcell lung cancer treated with Carboplatin and Paclitaxel plus bevacizumab. J Clin Oncol 2009;27:1405-1412 https://doi.org/10.1200/JCO.2008.16.2412
  30. Goh V, Ganeshan B, Nathan P, Juttla JK, Vinayan A, Miles KA. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology 2011;261:165-171 https://doi.org/10.1148/radiol.11110264
  31. Lee HY, Lee KS, Ahn MJ, Hwang HS, Lee JW, Park K, et al. New CT response criteria in non-small cell lung cancer: proposal and application in EGFR tyrosine kinase inhibitor therapy. Lung Cancer 2011;73:63-69 https://doi.org/10.1016/j.lungcan.2010.10.019
  32. Lee HY, Lee KS, Hwang HS, Lee JW, Ahn MJ, Park K, et al. Molecularly targeted therapy using bevacizumab for nonsmall cell lung cancer: a pilot study for the new CT response criteria. Korean J Radiol 2010;11:618-626 https://doi.org/10.3348/kjr.2010.11.6.618
  33. Hamaoka T, Costelloe CM, Madewell JE, Liu P, Berry DA, Islam R, et al. Tumour response interpretation with new tumour response criteria vs the World Health Organisation criteria in patients with bone-only metastatic breast cancer. Br J Cancer 2010;102:651-657 https://doi.org/10.1038/sj.bjc.6605546
  34. Coleman RE, Mashiter G, Whitaker KB, Moss DW, Rubens RD, Fogelman I. Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med 1988;29:1354-1359
  35. Imbriaco M, Larson SM, Yeung HW, Mawlawi OR, Erdi Y, Venkatraman ES, et al. A new parameter for measuring metastatic bone involvement by prostate cancer: the Bone Scan Index. Clin Cancer Res 1998;4:1765-1772
  36. Dennis ER, Jia X, Mezheritskiy IS, Stephenson RD, Schoder H, Fox JJ, et al. Bone scan index: a quantitative treatment response biomarker for castration-resistant metastatic prostate cancer. J Clin Oncol 2012;30:519-524 https://doi.org/10.1200/JCO.2011.36.5791
  37. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med 2009;50 Suppl 1:122S-150S
  38. Kawashima A, Libshitz HI. Malignant pleural mesothelioma: CT manifestations in 50 cases. AJR Am J Roentgenol 1990;155:965-969 https://doi.org/10.2214/ajr.155.5.2120965
  39. Armato SG 3rd, Ogarek JL, Starkey A, Vogelzang NJ, Kindler HL, Kocherginsky M, et al. Variability in mesothelioma tumor response classification. AJR Am J Roentgenol 2006;186:1000- 1006 https://doi.org/10.2214/AJR.05.0076
  40. Lee HY, Hyun SH, Lee KS, Kim BT, Kim J, Shim YM, et al. Volume-based parameter of 18)F-FDG PET/CT in malignant pleural mesothelioma: prediction of therapeutic response and prognostic implications. Ann Surg Oncol 2010;17:2787-2794 https://doi.org/10.1245/s10434-010-1107-z
  41. Fischer BM, Mortensen J, Hojgaard L. Positron emission tomography in the diagnosis and staging of lung cancer: a systematic, quantitative review. Lancet Oncol 2001;2:659-666 https://doi.org/10.1016/S1470-2045(01)00555-1
  42. Hoekstra CJ, Stroobants SG, Hoekstra OS, Vansteenkiste J, Biesma B, Schramel FJ, et al. The value of [18F]fluoro- 2-deoxy-D-glucose positron emission tomography in the selection of patients with stage IIIA-N2 non-small cell lung cancer for combined modality treatment. Lung Cancer 2003;39:151-157 https://doi.org/10.1016/S0169-5002(02)00446-4
  43. Berghmans T, Dusart M, Paesmans M, Hossein-Foucher C, Buvat I, Castaigne C, et al. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol 2008;3:6-12 https://doi.org/10.1097/JTO.0b013e31815e6d6b
  44. Kramer H, Post WJ, Pruim J, Groen HJ. The prognostic value of positron emission tomography in non-small cell lung cancer: analysis of 266 cases. Lung Cancer 2006;52:213-217 https://doi.org/10.1016/j.lungcan.2005.12.011
  45. Hoekstra CJ, Stroobants SG, Smit EF, Vansteenkiste J, van Tinteren H, Postmus PE, et al. Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-Dglucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J Clin Oncol 2005;23:8362-8370 https://doi.org/10.1200/JCO.2005.01.1189
  46. Lee DH, Kim SK, Lee HY, Lee SY, Park SH, Kim HY, et al. Early prediction of response to first-line therapy using integrated 18F-FDG PET/CT for patients with advanced/metastatic nonsmall cell lung cancer. J Thorac Oncol 2009;4:816-821 https://doi.org/10.1097/JTO.0b013e3181a99fde
  47. Decoster L, Schallier D, Everaert H, Nieboer K, Meysman M, Neyns B, et al. Complete metabolic tumour response, assessed by 18-fluorodeoxyglucose positron emission tomography (18FDG-PET), after induction chemotherapy predicts a favourable outcome in patients with locally advanced non-small cell lung cancer (NSCLC). Lung Cancer 2008;62:55-61 https://doi.org/10.1016/j.lungcan.2008.02.015
  48. Sunaga N, Oriuchi N, Kaira K, Yanagitani N, Tomizawa Y, Hisada T, et al. Usefulness of FDG-PET for early prediction of the response to gefitinib in non-small cell lung cancer. Lung Cancer 2008;59:203-210 https://doi.org/10.1016/j.lungcan.2007.08.012
  49. Aukema TS, Kappers I, Olmos RA, Codrington HE, van Tinteren H, van Pel R, et al. Is 18F-FDG PET/CT useful for the early prediction of histopathologic response to neoadjuvant erlotinib in patients with non-small cell lung cancer? J Nucl Med 2010;51:1344-1348 https://doi.org/10.2967/jnumed.110.076224
  50. Su H, Bodenstein C, Dumont RA, Seimbille Y, Dubinett S, Phelps ME, et al. Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res 2006;12:5659-5667 https://doi.org/10.1158/1078-0432.CCR-06-0368
  51. McDermott GM, Welch A, Staff RT, Gilbert FJ, Schweiger L, Semple SI, et al. Monitoring primary breast cancer throughout chemotherapy using FDG-PET. Breast Cancer Res Treat 2007;102:75-84 https://doi.org/10.1007/s10549-006-9316-7
  52. Semple SI, Gilbert FJ, Redpath TW, Staff RT, Ahearn TS, Welch AE, et al. The relationship between vascular and metabolic characteristics of primary breast tumours. Eur Radiol 2004;14:2038-2045 https://doi.org/10.1007/s00330-004-2454-6
  53. Semple SI, Staff RT, Heys SD, Redpath TW, Welch AE, Ahearn TS, et al. Baseline MRI delivery characteristics predict change in invasive ductal breast carcinoma PET metabolism as a result of primary chemotherapy administration. Ann Oncol 2006;17:1393-1398 https://doi.org/10.1093/annonc/mdl136
  54. Goh V, Ng QS, Miles K. Computed tomography perfusion imaging for therapeutic assessment: has it come of age as a biomarker in oncology? Invest Radiol 2012;47:2-4 https://doi.org/10.1097/RLI.0b013e318229ff3e
  55. Jiang T, Kambadakone A, Kulkarni NM, Zhu AX, Sahani DV. Monitoring response to antiangiogenic treatment and predicting outcomes in advanced hepatocellular carcinoma using image biomarkers, CT perfusion, tumor density, and tumor size (RECIST). Invest Radiol 2012;47:11-17 https://doi.org/10.1097/RLI.0b013e3182199bb5
  56. Reiner CS, Goetti R, Eberli D, Klotz E, Boss A, Pfammatter T, et al. CT perfusion of renal cell carcinoma: impact of volume coverage on quantitative analysis. Invest Radiol 2012;47:33- 40 https://doi.org/10.1097/RLI.0b013e31822598c3
  57. Padhani AR, Khan AA. Diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) for monitoring anticancer therapy. Target Oncol 2010;5:39-52 https://doi.org/10.1007/s11523-010-0135-8
  58. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223-232 https://doi.org/10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
  59. Barentsz JO, Berger-Hartog O, Witjes JA, Hulsbergen-van der Kaa C, Oosterhof GO, VanderLaak JA, et al. Evaluation of chemotherapy in advanced urinary bladder cancer with fast dynamic contrast-enhanced MR imaging. Radiology 1998;207:791-797
  60. Ah-See ML, Makris A, Taylor NJ, Harrison M, Richman PI, Burcombe RJ, et al. Early changes in functional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 2008;14:6580-6589 https://doi.org/10.1158/1078-0432.CCR-07-4310
  61. Padhani AR, Hayes C, Assersohn L, Powles T, Makris A, Suckling J, et al. Prediction of clinicopathologic response of breast cancer to primary chemotherapy at contrast-enhanced MR imaging: initial clinical results. Radiology 2006;239:361- 374 https://doi.org/10.1148/radiol.2392021099
  62. Reddick WE, Taylor JS, Fletcher BD. Dynamic MR imaging (DEMRI) of microcirculation in bone sarcoma. J Magn Reson Imaging 1999;10:277-285 https://doi.org/10.1002/(SICI)1522-2586(199909)10:3<277::AID-JMRI8>3.0.CO;2-S
  63. Padhani AR, Leach MO. Antivascular cancer treatments: functional assessments by dynamic contrast-enhanced magnetic resonance imaging. Abdom Imaging 2005;30:324- 341
  64. Rosen MA, Schnall MD. Dynamic contrast-enhanced magnetic resonance imaging for assessing tumor vascularity and vascular effects of targeted therapies in renal cell carcinoma. Clin Cancer Res 2007;13(2 Pt 2):770s-776s https://doi.org/10.1158/1078-0432.CCR-06-1921
  65. Liu G, Rugo HS, Wilding G, McShane TM, Evelhoch JL, Ng C, et al. Dynamic contrast-enhanced magnetic resonance imaging as a pharmacodynamic measure of response after acute dosing of AG-013736, an oral angiogenesis inhibitor, in patients with advanced solid tumors: results from a phase I study. J Clin Oncol 2005;23:5464-5473 https://doi.org/10.1200/JCO.2005.04.143
  66. Wedam SB, Low JA, Yang SX, Chow CK, Choyke P, Danforth D, et al. Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol 2006;24:769-777 https://doi.org/10.1200/JCO.2005.03.4645
  67. Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS. Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 2008;249:671-681 https://doi.org/10.1148/radiol.2492071956
  68. Schmid-Bindert G, Henzler T, Chu TQ, Meyer M, Nance JW Jr, Schoepf UJ, et al. Functional imaging of lung cancer using dual energy CT: how does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT? Eur Radiol 2012;22:93-103 https://doi.org/10.1007/s00330-011-2230-3
  69. Kim YN, Lee HY, Lee KS, Seo JB, Chung MJ, Ahn MJ, et al. Dual-energy CT in patients treated with anti-angiogenic agents for non-small cell lung cancer: a new method of monitoring tumor response? Korean J Radiol In press
  70. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 2007;188:1622-1635 https://doi.org/10.2214/AJR.06.1403
  71. Malayeri AA, El Khouli RH, Zaheer A, Jacobs MA, Corona- Villalobos CP, Kamel IR, et al. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics 2011;31:1773-1791 https://doi.org/10.1148/rg.316115515
  72. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009;11:102-125
  73. Chenevert TL, Stegman LD, Taylor JM, Robertson PL, Greenberg HS, Rehemtulla A, et al. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 2000;92:2029- 2036 https://doi.org/10.1093/jnci/92.24.2029
  74. Dzik-Jurasz A, Domenig C, George M, Wolber J, Padhani A, Brown G, et al. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet 2002;360:307-308 https://doi.org/10.1016/S0140-6736(02)09520-X
  75. DeVries AF, Kremser C, Hein PA, Griebel J, Krezcy A, Ofner D, et al. Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys 2003;56:958-965 https://doi.org/10.1016/S0360-3016(03)00208-6
  76. Koh DM, Scurr E, Collins D, Kanber B, Norman A, Leach MO, et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am J Roentgenol 2007;188:1001-1008 https://doi.org/10.2214/AJR.06.0601
  77. Hein PA, Kremser C, Judmaier W, Griebel J, Pfeiffer KP, Kreczy A, et al. Diffusion-weighted magnetic resonance imaging for monitoring diffusion changes in rectal carcinoma during combined, preoperative chemoradiation: preliminary results of a prospective study. Eur J Radiol 2003;45:214-222 https://doi.org/10.1016/S0720-048X(02)00231-0
  78. Pickles MD, Gibbs P, Lowry M, Turnbull LW. Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging 2006;24:843-847 https://doi.org/10.1016/j.mri.2005.11.005
  79. Sharma U, Danishad KK, Seenu V, Jagannathan NR. Longitudinal study of the assessment by MRI and diffusionweighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. NMR Biomed 2009;22:104-113 https://doi.org/10.1002/nbm.1245
  80. Chinnaiyan AM, Prasad U, Shankar S, Hamstra DA, Shanaiah M, Chenevert TL, et al. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci U S A 2000;97:1754-1759 https://doi.org/10.1073/pnas.030545097
  81. Uhl M, Saueressig U, Koehler G, Kontny U, Niemeyer C, Reichardt W, et al. Evaluation of tumour necrosis during chemotherapy with diffusion-weighted MR imaging: preliminary results in osteosarcomas. Pediatr Radiol 2006;36:1306-1311 https://doi.org/10.1007/s00247-006-0324-x
  82. Uhl M, Altehoefer C, Kontny U, Il'yasov K, Büchert M, Langer M. MRI-diffusion imaging of neuroblastomas: first results and correlation to histology. Eur Radiol 2002;12:2335-2338
  83. Yabuuchi H, Hatakenaka M, Takayama K, Matsuo Y, Sunami S, Kamitani T, et al. Non-small cell lung cancer: detection of early response to chemotherapy by using contrast-enhanced dynamic and diffusion-weighted MR imaging. Radiology 2011;261:598-604 https://doi.org/10.1148/radiol.11101503
  84. Park SY, Kim CK, Park BK, Lee HM, Lee KS. Prediction of biochemical recurrence following radical prostatectomy in men with prostate cancer by diffusion-weighted magnetic resonance imaging: initial results. Eur Radiol 2011;21:1111- 1118 https://doi.org/10.1007/s00330-010-1999-9
  85. Harry VN, Semple SI, Parkin DE, Gilbert FJ. Use of new imaging techniques to predict tumour response to therapy. Lancet Oncol 2010;11:92-102 https://doi.org/10.1016/S1470-2045(09)70190-1
  86. Manton DJ, Chaturvedi A, Hubbard A, Lind MJ, Lowry M, Maraveyas A, et al. Neoadjuvant chemotherapy in breast cancer: early response prediction with quantitative MR imaging and spectroscopy. Br J Cancer 2006;94:427-435 https://doi.org/10.1038/sj.bjc.6602948
  87. Morse DL, Carroll D, Day S, Gray H, Sadarangani P, Murthi S, et al. Characterization of breast cancers and therapy response by MRS and quantitative gene expression profiling in the choline pathway. NMR Biomed 2009;22:114-127 https://doi.org/10.1002/nbm.1318
  88. Baek HM, Chen JH, Nie K, Yu HJ, Bahri S, Mehta RS, et al. Predicting pathologic response to neoadjuvant chemotherapy in breast cancer by using MR imaging and quantitative 1H MR spectroscopy. Radiology 2009;251:653-662 https://doi.org/10.1148/radiol.2512080553
  89. Wu B, Peng WJ, Wang PJ, Gu YJ, Li WT, Zhou LP, et al. In vivo 1H magnetic resonance spectroscopy in evaluation of hepatocellular carcinoma and its early response to transcatheter arterial chemoembolization. Chin Med Sci J 2006;21:258-264
  90. Preul MC, Caramanos Z, Villemure JG, Shenouda G, LeBlanc R, Langleben A, et al. Using proton magnetic resonance spectroscopic imaging to predict in vivo the response of recurrent malignant gliomas to tamoxifen chemotherapy. Neurosurgery 2000;46:306-318 https://doi.org/10.1097/00006123-200002000-00009
  91. Lodi A, Ronen SM. Magnetic resonance spectroscopy detectable metabolomic fingerprint of response to antineoplastic treatment. PLoS One 2011;6:e26155 https://doi.org/10.1371/journal.pone.0026155
  92. Padhani AR, Miles KA. Multiparametric imaging of tumor response to therapy. Radiology 2010;256:348-364 https://doi.org/10.1148/radiol.10091760
  93. Zhao B, James LP, Moskowitz CS, Guo P, Ginsberg MS, Lefkowitz RA, et al. Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer. Radiology 2009;252:263-272 https://doi.org/10.1148/radiol.2522081593
  94. Oxnard GR, Zhao B, Sima CS, Ginsberg MS, James LP, Lefkowitz RA, et al. Variability of lung tumor measurements on repeat computed tomography scans taken within 15 minutes. J Clin Oncol 2011;29:3114-3119 https://doi.org/10.1200/JCO.2010.33.7071
  95. Goldmacher GV, Conklin J. The use of tumour volumetrics to assess response to therapy in anticancer clinical trials. Br J Clin Pharmacol 2012;73:846-854 https://doi.org/10.1111/j.1365-2125.2012.04179.x
  96. Gavrielides MA, Kinnard LM, Myers KJ, Petrick N. Noncalcified lung nodules: volumetric assessment with thoracic CT. Radiology 2009;251:26-37 https://doi.org/10.1148/radiol.2511071897
  97. Zhao B, Schwartz LH, Moskowitz CS, Ginsberg MS, Rizvi NA, Kris MG. Lung cancer: computerized quantification of tumor response--initial results. Radiology 2006;241:892-898 https://doi.org/10.1148/radiol.2413051887
  98. Food and Drug Administration. United States food and drug administration guidance for industry: clinical trial endpoints for the approval of cancer drugs and biologics. Rockville, MD: US Department of Health and Human Services; 2007.
  99. Ford R, Schwartz L, Dancey J, Dodd LE, Eisenhauer EA, Gwyther S, et al. Lessons learned from independent central review. Eur J Cancer 2009;45:268-274 https://doi.org/10.1016/j.ejca.2008.10.031
  100. Gwyther SJ, Schwartz LH. How to assess anti-tumour efficacy by imaging techniques. Eur J Cancer 2008;44:39-45 https://doi.org/10.1016/j.ejca.2007.10.010
  101. Saini S. Radiologic measurement of tumor size in clinical trials: past, present, and future. AJR Am J Roentgenol 2001;176:333-334 https://doi.org/10.2214/ajr.176.2.1760333
  102. Sullivan DC, Gatsonis C. Response to treatment series: part 1 and introduction, measuring tumor response--challenges in the era of molecular medicine. AJR Am J Roentgenol 2011;197:15-17 https://doi.org/10.2214/AJR.11.7083
  103. Hirsch FR, Mok TS, Borges V, Bunn PA Jr. Molecularly targeted therapy: when to stop and when to continue? Lancet Oncol 2010;11:709-711 https://doi.org/10.1016/S1470-2045(10)70128-5

Cited by

  1. Drugs for solid cancer: the productivity crisis prompts a rethink vol.6, pp.None, 2012, https://doi.org/10.2147/ott.s45177
  2. Liver Metastases in the Era of Molecular Targeted Therapy: New Faces of Treatment Response vol.201, pp.1, 2013, https://doi.org/10.2214/ajr.12.9498
  3. Prognostic Significance of Volume-Based PET Parameters in Cancer Patients vol.14, pp.1, 2013, https://doi.org/10.3348/kjr.2013.14.1.1
  4. Comparison of the Diagnostic Performance of Response Evaluation Criteria in Solid Tumor 1.0 with Response Evaluation Criteria in Solid Tumor 1.1 on MRI in Advanced Breast Cancer Response Evaluation to vol.14, pp.1, 2012, https://doi.org/10.3348/kjr.2013.14.1.13
  5. Dynamic Contrast-Enhanced MRI for Monitoring Antiangiogenic Treatment: Determination of Accurate and Reliable Perfusion Parameters in a Longitudinal Study of a Mouse Xenograft Model vol.14, pp.4, 2013, https://doi.org/10.3348/kjr.2013.14.4.589
  6. Pre-Treatment Diffusion-Weighted MR Imaging for Predicting Tumor Recurrence in Uterine Cervical Cancer Treated with Concurrent Chemoradiation: Value of Histogram Analysis of Apparent Diffusion Coeffic vol.14, pp.4, 2013, https://doi.org/10.3348/kjr.2013.14.4.616
  7. A Suspicious Breast Lesion Detected by Dynamic Contrast-Enhanced MRI and Pathologically Confirmed as Capillary Hemangioma: a Case Report and Literature Review vol.14, pp.6, 2012, https://doi.org/10.3348/kjr.2013.14.6.869
  8. Perfusion Parameters of Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Patients with Rectal Cancer: Correlation with Microvascular Density and Vascular Endothelial Growth Factor Expression vol.14, pp.6, 2013, https://doi.org/10.3348/kjr.2013.14.6.878
  9. RE: Uterine Fibroid Treatment Planning with the Diffusion Weighted Imaging Tool vol.14, pp.3, 2013, https://doi.org/10.3348/kjr.2013.14.3.547
  10. ADC texture-An imaging biomarker for high-grade glioma? : ADC texture, an imaging biomarker for high-grade glioma? vol.41, pp.10, 2012, https://doi.org/10.1118/1.4894812
  11. ADC texture-An imaging biomarker for high-grade glioma? : ADC texture, an imaging biomarker for high-grade glioma? vol.41, pp.10, 2012, https://doi.org/10.1118/1.4894812
  12. PET imaging of glucose metabolism, neuroinflammation and demyelination in the lysolecithin rat model for multiple sclerosis vol.20, pp.11, 2012, https://doi.org/10.1177/1352458514526941
  13. Quantitative CT Variables Enabling Response Prediction in Neoadjuvant Therapy with EGFR-TKIs: Are They Different from Those in Neoadjuvant Concurrent Chemoradiotherapy? vol.9, pp.2, 2012, https://doi.org/10.1371/journal.pone.0088598
  14. Response Evaluation to Neoadjuvant Chemotherapy in Advanced Breast Cancer: Comparison of MRI and Positron Emission Tomography/CT (RECIST 1.1 versus PERCIST 1.0) vol.71, pp.2, 2014, https://doi.org/10.3348/jksr.2014.71.2.89
  15. Use of Initial Modified RECIST Tumor Response Evaluation Criteria for Predicting Survival in Patients with Hepatocellular Carcinoma Undergoing Transarterial Chemoembolization with Drug-Eluting Beads vol.6, pp.13, 2015, https://doi.org/10.4236/jct.2015.613121
  16. The dog prostate cancer (DPC-1) model: a reliable tool for molecular imaging of prostate tumors and metastases vol.5, pp.1, 2012, https://doi.org/10.1186/s13550-015-0155-6
  17. Image based modeling of tumor growth vol.39, pp.3, 2016, https://doi.org/10.1007/s13246-016-0475-5
  18. Differentiation of malignant cervical lymphadenopathy by dual-energy CT: a preliminary analysis vol.6, pp.None, 2012, https://doi.org/10.1038/srep31020
  19. Radiomics Analysis on FLT-PET/MRI for Characterization of Early Treatment Response in Renal Cell Carcinoma: A Proof-of-Concept Study 1 vol.9, pp.2, 2012, https://doi.org/10.1016/j.tranon.2016.01.008
  20. Imaging genomics in cancer research: limitations and promises vol.89, pp.1061, 2016, https://doi.org/10.1259/bjr.20151030
  21. Cancer Measurement at Ultrasound : State of the Art vol.33, pp.2, 2017, https://doi.org/10.1097/ruq.0000000000000266
  22. Biomarkers and Imaging of Breast Cancer vol.210, pp.2, 2012, https://doi.org/10.2214/ajr.17.18708
  23. Giant Cell Tumors of the Bone: Changes in Image Features after Denosumab Administration vol.17, pp.4, 2012, https://doi.org/10.2463/mrms.mp.2017-0072
  24. Computed tomography densitometric study of anti-angiogenic effect of regorafenib in colorectal cancer liver metastasis vol.14, pp.28, 2012, https://doi.org/10.2217/fon-2017-0687
  25. Measurement Variability in Treatment Response Determination for Non-Small Cell Lung Cancer : Improvements Using Radiomics vol.34, pp.2, 2012, https://doi.org/10.1097/rti.0000000000000390
  26. Intratumor lactate levels reflect HER2 addiction status in HER2‐positive breast cancer vol.234, pp.2, 2012, https://doi.org/10.1002/jcp.27049
  27. The place of trabectedin in the treatment of soft tissue sarcoma: an umbrella review of the level one evidence vol.7, pp.3, 2012, https://doi.org/10.1080/21678707.2019.1589449
  28. Application of computed tomography-based radiomics signature analysis in the prediction of the response of small cell lung cancer patients to first-line chemotherapy vol.17, pp.5, 2012, https://doi.org/10.3892/etm.2019.7357
  29. Clinical impact of variability on CT radiomics and suggestions for suitable feature selection: a focus on lung cancer vol.19, pp.1, 2012, https://doi.org/10.1186/s40644-019-0239-z
  30. Diffusion-weighted MR imaging diagnostic merits in the post-therapeutic assessment of musculoskeletal soft tissue sarcoma vol.50, pp.1, 2012, https://doi.org/10.1186/s43055-019-0060-5
  31. Integrating Liquid Biopsy and Radiomics to Monitor Clonal Heterogeneity of EGFR-Positive Non-Small Cell Lung Cancer vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.593831
  32. In vivo assessment of functional and morphological alterations in tumors under treatment using OCT-angiography combined with OCT-elastography vol.11, pp.3, 2012, https://doi.org/10.1364/boe.386419
  33. A patent review of anticancer glucocorticoid receptor modulators (2014-present) vol.30, pp.5, 2012, https://doi.org/10.1080/13543776.2020.1740206
  34. Radio-Pathological Correlations in Patients with Liver Metastases for Colorectal Cancer vol.37, pp.5, 2020, https://doi.org/10.1159/000506105
  35. Predicting response to neo-adjuvant chemotherapy and assessment of residual disease in breast cancer using contrast-enhanced spectral mammography: a combined qualitative and quantitative approach vol.51, pp.1, 2020, https://doi.org/10.1186/s43055-020-00275-2
  36. Quantitative imaging decision support (QIDSTM) tool consistency evaluation and radiomic analysis by means of 594 metrics in lung carcinoma on chest CT scan vol.28, pp.None, 2021, https://doi.org/10.1177/1073274820985786
  37. Texture analysis for chemotherapy response evaluation in osteosarcoma using MR imaging vol.34, pp.2, 2021, https://doi.org/10.1002/nbm.4426
  38. Long-term progression-free survival in a patient with advanced non-small-cell lung cancer treated with low-dose gefitinib and traditional herbal medicine : A case report vol.100, pp.5, 2021, https://doi.org/10.1097/md.0000000000024292
  39. Imaging Beyond Seeing: Early Prognosis of Cancer Treatment vol.5, pp.3, 2012, https://doi.org/10.1002/smtd.202001025
  40. Evaluation of Response to Immune Checkpoint Inhibitors Using a Radiomics, Lesion-Level Approach vol.13, pp.23, 2012, https://doi.org/10.3390/cancers13236050