DOI QR코드

DOI QR Code

Current Epidemiology and Growing Resistance of Gram-Negative Pathogens

  • Livermore, David M. (Norwich Medical School, University of East Anglia)
  • 발행 : 2012.06.01

초록

In the 1980s, Gram-negative pathogens appeared to have been beaten by oxyimino-cephalosporins, carbapenems, and fluoroquinolones. Yet these pathogens have fought back, aided by their membrane organization, which promotes the exclusion and efflux of antibiotics, and by a remarkable propensity to recruit, transfer, and modify the expression of resistance genes, including those for extended-spectrum ${\beta}$-lactamases (ESBLs), carbapenemases, aminoglycoside-blocking 16S rRNA methylases, and even a quinolone-modifying variant of an aminoglycoside-modifying enzyme. Gram-negative isolates -both fermenters and non-fermenters- susceptible only to colistin and, more variably, fosfomycin and tigecycline, are encountered with increasing frequency, including in Korea. Some ESBLs and carbapenemases have become associated with strains that have great epidemic potential, spreading across countries and continents; examples include Escherichia coli sequence type (ST)131 with CTX-M-15 ESBL and Klebsiella pneumoniae ST258 with KPC carbapenemases. Both of these high-risk lineages have reached Korea. In other cases, notably New Delhi Metallo carbapenemase, the relevant gene is carried by promiscuous plasmids that readily transfer among strains and species. Unless antibiotic stewardship is reinforced, microbiological diagnosis accelerated, and antibiotic development reinvigorated, there is a real prospect that the antibiotic revolution of the 20th century will crumble.

키워드

참고문헌

  1. Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 2009;48:1-12. https://doi.org/10.1086/595011
  2. Holmes NE, Howden BP. The rise of antimicrobial resistance: a clear and present danger. Expert Rev Anti Infect Ther 2011;9:645-648. https://doi.org/10.1586/eri.11.49
  3. Livermore DM; British Society for Antimicrobial Chemotherapy Working Party on The Urgent Need: Regenerating Antibacterial Drug Discovery and Development. Discovery research: the scientific challenge of finding new antibiotics. J Antimicrob Chemother 2011;66:1941-1944. https://doi.org/10.1093/jac/dkr262
  4. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 2007;6:29-40. https://doi.org/10.1038/nrd2201
  5. Finch R; BSAC Working Party on the Urgent Need: Regenerating Antibacterial Drug Discovery and Development. Regulatory opportunities to encourage technology solutions to antibacterial drug resistance. J Antimicrob Chemother 2011;66:1945-1947. https://doi.org/10.1093/jac/dkr259
  6. White AR; BSAC Working Party on the Urgent Need: Regenerating Antibacterial Drug Discovery and Development. Effective antibacterials: at what cost? The economics of antibacterial resistance and its control. J Antimicrob Chemother 2011;66:1948-1953. https://doi.org/10.1093/jac/dkr260
  7. Projan SJ. Why is big pharma getting out of antibacterial drug discovery? Curr Opin Microbiol 2003;6:427-430. https://doi.org/10.1016/j.mib.2003.08.003
  8. Paul M, Shani V, Muchtar E, Kariv G, Robenshtok E, Leibovici L. Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents Chemother 2010;54:4851-4863. https://doi.org/10.1128/AAC.00627-10
  9. Kollef MH. Broad-spectrum antimicrobials and the treatment of serious bacterial infections: getting it right up front. Clin Infect Dis 2008;47 Suppl 1:S3-S13. https://doi.org/10.1086/590061
  10. Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria: an update. Drugs 2009;69:1555-1623. https://doi.org/10.2165/11317030-000000000-00000
  11. Alvarez-Ortega C, Wiegand I, Olivares J, Hancock RE, Martinez JL. The intrinsic resistome of Pseudomonas aeruginosa to $\beta$-lactams. Virulence 2011;2:144-146. https://doi.org/10.4161/viru.2.2.15014
  12. Pages JM, Amaral L. Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gramnegative bacteria. Biochim Biophys Acta 2009;1794:826-833. https://doi.org/10.1016/j.bbapap.2008.12.011
  13. Wilson J, Elgohari S, Livermore DM, et al. Trends among pathogens reported as causing bacteraemia in England, 2004-2008. Clin Microbiol Infect 2011;17:451-458. https://doi.org/10.1111/j.1469-0691.2010.03262.x
  14. Livermore DM. Clinical significance of beta-lactamase induction and stable derepression in gram-negative rods. Eur J Clin Microbiol 1987;6:439-445. https://doi.org/10.1007/BF02013107
  15. Kaye KS, Cosgrove S, Harris A, Eliopoulos GM, Carmeli Y. Risk factors for emergence of resistance to broad-spectrum cephalosporins among Enterobacter spp. Antimicrob Agents Chemother 2001;45:2628-2630. https://doi.org/10.1128/AAC.45.9.2628-2630.2001
  16. Cosgrove SE, Kaye KS, Eliopoulous GM, Carmeli Y. Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. Arch Intern Med 2002;162:185-190. https://doi.org/10.1001/archinte.162.2.185
  17. Schwaber MJ, Graham CS, Sands BE, Gold HS, Carmeli Y. Treatment with a broad-spectrum cephalosporin versus piperacillin-tazobactam and the risk for isolation of broadspectrum cephalosporin-resistant Enterobacter species. Antimicrob Agents Chemother 2003;47:1882-1886. https://doi.org/10.1128/AAC.47.6.1882-1886.2003
  18. Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev 2009;22:161-182. https://doi.org/10.1128/CMR.00036-08
  19. Jacoby GA. Extended-spectrum beta-lactamases and other enzymes providing resistance to oxyimino-beta-lactams. Infect Dis Clin North Am 1997;11:875-887. https://doi.org/10.1016/S0891-5520(05)70395-0
  20. Hawkey PM. Prevalence and clonality of extended-spectrum beta-lactamases in Asia. Clin Microbiol Infect 2008;14 Suppl 1:159-165. https://doi.org/10.1111/j.1469-0691.2007.01855.x
  21. Paterson DL, Bonomo R A. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005;18:657-686. https://doi.org/10.1128/CMR.18.4.657-686.2005
  22. Bush K. Extended-spectrum beta-lactamases in North America, 1987-2006. Clin Microbiol Infect 2008;14 Suppl 1:134-143. https://doi.org/10.1111/j.1469-0691.2007.01848.x
  23. Livermore DM, Canton R, Gniadkowski M, et al. CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 2007;59:165-174.
  24. Rossolini GM, D'Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect 2008;14 Suppl 1:33-41. https://doi.org/10.1111/j.1469-0691.2007.01867.x
  25. Naseer U, Sundsfjord A. The CTX-M conundrum: dissemination of plasmids and Escherichia coli clones. Microb Drug Resist 2011;17:83-97. https://doi.org/10.1089/mdr.2010.0132
  26. Livermore DM. Fourteen years in resistance. Int J Antimicrob Agents 2012;39:283-294. https://doi.org/10.1016/j.ijantimicag.2011.12.012
  27. Rooney PJ, O'Leary MC, Loughrey AC, et al. Nursing homes as a reservoir of extended-spectrum beta-lactamase (ESBL)-producing ciprofloxacin-resistant Escherichia coli. J Antimicrob Chemother 2009;64:635-641. https://doi.org/10.1093/jac/dkp220
  28. Rodriguez-Bano J, Picon E, Gijon P, et al. Risk factors and prognosis of nosocomial bloodstream infections caused by extended-spectrum-beta-lactamase-producing Escherichia coli. J Clin Microbiol 2010;48:1726-1731. https://doi.org/10.1128/JCM.02353-09
  29. Pitout JD, Campbell L, Church DL, Gregson DB, Laupland KB. Molecular characteristics of travel-related extendedspectrum- beta-lactamase-producing Escherichia coli isolates from the Calgary Health Region. Antimicrob Agents Chemother 2009;53:2539-2543. https://doi.org/10.1128/AAC.00061-09
  30. Hoban DJ, Nicolle LE, Hawser S, Bouchillon S, Badal R. Antimicrobial susceptibility of global inpatient urinary tract isolates of Escherichia coli: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART) program: 2009-2010. Diagn Microbiol Infect Dis 2011;70:507-511. https://doi.org/10.1016/j.diagmicrobio.2011.03.021
  31. Chaudhuri BN, Rodrigues C, Balaji V, et al. Incidence of ESBL producers amongst Gram-negative bacilli isolated from intra-abdominal infections across India (based on SMART study, 2007 data). J Assoc Physicians India 2011;59:287-292.
  32. Hsueh PR, Badal RE, Hawser SP, et al. Epidemiology and antimicrobial susceptibility profiles of aerobic and facultative Gram-negative bacilli isolated from patients with intraabdominal infections in the Asia-Pacific region: 2008 results from SMART (Study for Monitoring Antimicrobial Resistance Trends). Int J Antimicrob Agents 2010;36:408-414. https://doi.org/10.1016/j.ijantimicag.2010.07.002
  33. Tangden T, Cars O, Melhus A, Lowdin E. Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended-spectrum beta-lactamases: a prospective study with Swedish volunteers. Antimicrob Agents Chemother 2010;54:3564-3568. https://doi.org/10.1128/AAC.00220-10
  34. Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 2011;11:355- 362. https://doi.org/10.1016/S1473-3099(11)70059-7
  35. Ho PL, Yip KS, Chow KH, Lo JY, Que TL, Yuen KY. Antimicrobial resistance among uropathogens that cause acute uncomplicated cystitis in women in Hong Kong: a prospective multicenter study in 2006 to 2008. Diagn Microbiol Infect Dis 2010;66:87-93. https://doi.org/10.1016/j.diagmicrobio.2009.03.027
  36. Velasco C, Rodriguez-Bano J, Garcia L, et al. Eradication of an extensive outbreak in a neonatal unit caused by two sequential Klebsiella pneumoniae clones harbouring related plasmids encoding an extended-spectrum beta-lactamase. J Hosp Infect 2009;73:157-163. https://doi.org/10.1016/j.jhin.2009.06.013
  37. Chandel DS, Johnson JA, Chaudhry R, et al. Extendedspectrum beta-lactamase-producing Gram-negative bacteria causing neonatal sepsis in India in rural and urban settings. J Med Microbiol 2011;60(Pt 4):500-507. https://doi.org/10.1099/jmm.0.027375-0
  38. Doumith M, Dhanji H, Ellington MJ, Hawkey P, Woodford N. Characterization of plasmids encoding extended-spectrum $\beta$-lactamases and their addiction systems circulating among Escherichia coli clinical isolates in the UK. J Antimicrob Chemother 2012;67:878-885. https://doi.org/10.1093/jac/dkr553
  39. Partridge SR, Zong Z, Iredell JR. Recombination in IS26 and Tn2 in the evolution of multiresistance regions carrying blaCTX-M-15 on conjugative IncF plasmids from Escherichia coli. Antimicrob Agents Chemother 2011;55:4971-4978. https://doi.org/10.1128/AAC.00025-11
  40. Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b- ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 2011;66:1-14. https://doi.org/10.1093/jac/dkq415
  41. Woodford N, Carattoli A, Karisik E, Underwood A, Ellington MJ, Livermore DM. Complete nucleotide sequences of plasmids pEK204, pEK499, and pEK516, encoding CTX-M enzymes in three major Escherichia coli lineages from the United Kingdom, all belonging to the international O25:H4- ST131 clone. Antimicrob Agents Chemother 2009;53:4472-4482. https://doi.org/10.1128/AAC.00688-09
  42. Dhanji H, Doumith M, Rooney PJ, et al. Molecular epidemiology of fluoroquinolone-resistant ST131 Escherichia coli producing CTX-M extended-spectrum beta-lactamases in nursing homes in Belfast, UK. J Antimicrob Chemother 2011;66:297-303. https://doi.org/10.1093/jac/dkq463
  43. Pai H. The characteristics of extended-spectrum betalactamases in Korean isolates of Enterobacteriaceae. Yonsei Med J 1998;39:514-519. https://doi.org/10.3349/ymj.1998.39.6.514
  44. Jeong SH, Bae IK, Lee JH, et al. Molecular characterization of extended-spectrum beta-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J Clin Microbiol 2004;42:2902-2906. https://doi.org/10.1128/JCM.42.7.2902-2906.2004
  45. Jeong SH, Bae IK, Kwon SB, et al. Dissemination of transferable CTX-M-type extended-spectrum beta-lactamaseproducing Escherichia coli in Korea. J Appl Microbiol 2005;98:921-927. https://doi.org/10.1111/j.1365-2672.2004.02526.x
  46. Kang CI, Wi YM, Lee MY, et al. Epidemiology and risk factors of community onset infections caused by extendedspectrum $\beta$-lactamase-producing Escherichia coli strains. J Clin Microbiol 2012;50:312-317. https://doi.org/10.1128/JCM.06002-11
  47. Shin J, Kim DH, Ko KS. Comparison of CTX-M-14- and CTXM-15-producing Escherichia coli and Klebsiella pneumoniae isolates from patients with bacteremia. J Infect 2011;63:39-47. https://doi.org/10.1016/j.jinf.2011.05.003
  48. Lee MY, Choi HJ, Choi JY, et al. Dissemination of ST131 and ST393 community-onset, ciprofloxacin-resistant Escherichia coli clones causing urinary tract infections in Korea. J Infect 2010;60:146-153. https://doi.org/10.1016/j.jinf.2009.11.004
  49. Park SH, Choi SM, Lee DG, et al. Emergence of extendedspectrum $\beta$-lactamase-producing escherichia coli as a cause of community-onset bacteremia in South Korea: risk factors and clinical outcomes. Microb Drug Resist 2011;17:537-544. https://doi.org/10.1089/mdr.2011.0072
  50. Lee DS, Lee CB, Lee SJ. Prevalence and risk factors for extended spectrum beta-lactamase-producing uropathogens in patients with urinary tract infection. Korean J Urol 2010;51:492-497. https://doi.org/10.4111/kju.2010.51.7.492
  51. Kim ME, Ha US, Cho YH. Prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in female outpatients in South Korea: a multicentre study in 2006. Int J Antimicrob Agents 2008;31 Suppl 1:S15-S18. https://doi.org/10.1016/j.ijantimicag.2007.07.043
  52. Lee SJ, Lee DS, Choe HS, et al. Antimicrobial resistance in community-acquired urinary tract infections: results from the Korean Antimicrobial Resistance Monitoring System. J Infect Chemother 2011;17:440-446. https://doi.org/10.1007/s10156-010-0178-x
  53. Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Infect Control 2006;34(5 Suppl 1):S20-S28. https://doi.org/10.1016/j.ajic.2006.05.238
  54. Karisik E, Ellington MJ, Pike R, Warren RE, Livermore DM, Woodford N. Molecular characterization of plasmids encoding CTX-M-15 beta-lactamases from Escherichia coli strains in the United Kingdom. J Antimicrob Chemother 2006;58:665-668. https://doi.org/10.1093/jac/dkl309
  55. Boyd DA, Tyler S, Christianson S, et al. Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrob Agents Chemother 2004;48:3758-3764. https://doi.org/10.1128/AAC.48.10.3758-3764.2004
  56. Fritsche TR, Castanheira M, Miller GH, Jones RN, Armstrong ES. Detection of methyltransferases conferring highlevel resistance to aminoglycosides in enterobacteriaceae from Europe, North America, and Latin America. Antimicrob Agents Chemother 2008;52:1843-1845. https://doi.org/10.1128/AAC.01477-07
  57. Yang J, Ye L, Wang W, Luo Y, Zhang Y, Han L. Diverse prevalence of 16S rRNA methylase genes armA and rmtB amongst clinical multidrug-resistant Escherichia coli and Klebsiella pneumoniae isolates. Int J Antimicrob Agents 2011;38:348-351. https://doi.org/10.1016/j.ijantimicag.2011.04.021
  58. Yu F, Wang L, Pan J, et al. Prevalence of 16S rRNA methylase genes in Klebsiella pneumoniae isolates from a Chinese teaching hospital: coexistence of rmtB and armA genes in the same isolate. Diagn Microbiol Infect Dis 2009;64:57-63. https://doi.org/10.1016/j.diagmicrobio.2009.01.020
  59. Livermore DM, Mushtaq S, Warner M, et al. Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J Antimicrob Chemother 2011;66:48-53. https://doi.org/10.1093/jac/dkq408
  60. Kang HY, Kim J, Seol SY, Lee YC, Lee JC, Cho DT. Characterization of conjugative plasmids carrying antibiotic resistance genes encoding 16S rRNA methylase, extended-spectrum beta-lactamase, and/or plasmid-mediated AmpC beta-lactamase. J Microbiol 2009;47:68-75. https://doi.org/10.1007/s12275-008-0158-3
  61. Kim MH, Sung JY, Park JW, Kwon GC, Koo SH. Coproduction of qnrB and armA from extended-spectrum betalactamase- producing Klebsiella pneumoniae. Korean J Lab Med 2007;27:428-436. https://doi.org/10.3343/kjlm.2007.27.6.428
  62. Doumith M, Ellington MJ, Livermore DM, Woodford N. Molecular mechanisms disrupting porin expression in ertapenem- resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother 2009;63:659-667. https://doi.org/10.1093/jac/dkp029
  63. Elliott E, Brink AJ, van Greune J, et al. In vivo development of ertapenem resistance in a patient with pneumonia caused by Klebsiella pneumoniae with an extended-spectrum betalactamase. Clin Infect Dis 2006;42:e95-e98. https://doi.org/10.1086/503264
  64. Garcia-Fernandez A, Miriagou V, Papagiannitsis CC, et al. An ertapenem-resistant extended-spectrum-beta-lactamaseproducing Klebsiella pneumoniae clone carries a novel OmpK36 porin variant. Antimicrob Agents Chemother 2010;54:4178-4184. https://doi.org/10.1128/AAC.01301-09
  65. Suh B, Bae IK, Kim J, Jeong SH, Yong D, Lee K. Outbreak of meropenem-resistant Serratia marcescens comediated by chromosomal AmpC beta-lactamase overproduction and outer membrane protein loss. Antimicrob Agents Chemother 2010;54:5057-5061. https://doi.org/10.1128/AAC.00768-10
  66. Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 2009;9:228-236. https://doi.org/10.1016/S1473-3099(09)70054-4
  67. Giakkoupi P, Papagiannitsis CC, Miriagou V, et al. An update of the evolving epidemic of blaKPC-2-carrying Klebsiella pneumoniae in Greece (2009-10). J Antimicrob Chemother 2011;66:1510-1513. https://doi.org/10.1093/jac/dkr166
  68. Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 2011;35:736-755. https://doi.org/10.1111/j.1574-6976.2011.00268.x
  69. Kontopoulou K, Protonotariou E, Vasilakos K, et al. Hospital outbreak caused by Klebsiella pneumoniae producing KPC-2 beta-lactamase resistant to colistin. J Hosp Infect 2010;76:70-73. https://doi.org/10.1016/j.jhin.2010.03.021
  70. Toth A, Damjanova I, Puskas E, et al. Emergence of a colistin-resistant KPC-2-producing Klebsiella pneumoniae ST258 clone in Hungary. Eur J Clin Microbiol Infect Dis 2010;29:765-769. https://doi.org/10.1007/s10096-010-0921-3
  71. Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991;35:147-151. https://doi.org/10.1128/AAC.35.1.147
  72. Lauretti L, Riccio ML, Mazzariol A, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-betalactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 1999;43:1584-1590.
  73. Vatopoulos A. High rates of metallo-beta-lactamase-producing Klebsiella pneumoniae in Greece: a review of the current evidence. Euro Surveill 2008;13:pii=2008.
  74. Garcia-Fernandez A, Villa L, Moodley A, et al. Multilocus sequence typing of IncN plasmids. J Antimicrob Chemother 2011;66:1987-1991. https://doi.org/10.1093/jac/dkr225
  75. Lascols C, Hackel M, Marshall SH, et al. Increasing prevalence and dissemination of NDM-1 metallo-$\beta$-lactamase in India: data from the SMART study (2009). J Antimicrob Chemother 2011;66:1992-1997. https://doi.org/10.1093/jac/dkr240
  76. Deshpande P, Shetty A, Kapadia F, Hedge A, Soman R, Rodrigues C. New Delhi metallo 1: have carbapenems met their doom? Clin Infect Dis 2010;51:1222.
  77. Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 2010;10:597-602. https://doi.org/10.1016/S1473-3099(10)70143-2
  78. Carrer A, Poirel L, Yilmaz M, et al. Spread of OX A-48- encoding plasmid in Turkey and beyond. Antimicrob Agents Chemother 2010;54:1369-1373. https://doi.org/10.1128/AAC.01312-09
  79. Potron A, Kalpoe J, Poirel L, Nordmann P. European dissemina tion of a single OXA-48-producing Klebsiella pneumoniae clone. Clin Microbiol Infect 2011;17:E24-E26. https://doi.org/10.1111/j.1469-0691.2011.03669.x
  80. Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrob Agents Chemother 2012;56:559-562. https://doi.org/10.1128/AAC.05289-11
  81. Castanheira M, Deshpande LM, Mathai D, Bell JM, Jones RN, Mendes RE. Early dissemination of NDM-1- and OXA- 181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006-2007. Antimicrob Agents Chemother 2011;55:1274-1278. https://doi.org/10.1128/AAC.01497-10
  82. Lee HK, Park YJ, Kim JY, et al. Prevalence of decreased susceptibility to carbapenems among Serratia marcescens, Enterobacter cloacae, and Citrobacter freundii and investigation of carbapenemases. Diagn Microbiol Infect Dis 2005;52:331-336. https://doi.org/10.1016/j.diagmicrobio.2005.04.012
  83. Rhee JY, Park YK, Shin JY, et al. KPC-producing extreme drug-resistant Klebsiella pneumoniae isolate from a patient with diabetes mellitus and chronic renal failure on hemodialysis in South Korea. Antimicrob Agents Chemother 2010;54:2278-2279. https://doi.org/10.1128/AAC.00011-10
  84. Kim MN, Yong D, An D, et al. Nosocomial clustering of NDM-1-producing Klebsiella pneumoniae sequence type 340 strains in four patients at a South Korean tertiary care hospital. J Clin Microbiol 2012;50:1433-1436. https://doi.org/10.1128/JCM.06855-11
  85. Roh KH, Lee CK, Sohn JW, Song W, Yong D, Lee K. Isolation of a Klebsiella pneumoniae isolate of sequence type 258 producing KPC-2 carbapenemase in Korea. Korean J Lab Med 2011;31:298-301. https://doi.org/10.3343/kjlm.2011.31.4.298
  86. European Centre for Disease Prevention and Control. European Antimicrobial Resistance Surveillance Network (EARS-Net) [Internet]. Solna, Sweden: European Centre for Disease Prevention and Control, c2012 [cited 2012 Mar 20]. Available from: http://www.ecdc.europa.eu/en/activities/ surveillance/ears-net.
  87. Bertrand X, Dowzicky MJ. Antimicrobial susceptibility among gram-negative isolates collected from intensive care units in North America, Europe, the Asia-Pacific Rim, Latin America, the Middle East, and Africa between 2004 and 2009 as part of the Tigecycline Evaluation and Surveillance Trial. Clin Ther 2012;34:124-137. https://doi.org/10.1016/j.clinthera.2011.11.023
  88. Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 2002;34:634-640. https://doi.org/10.1086/338782
  89. Breidenstein EB, de la Fuente-Nunez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 2011;19:419-426. https://doi.org/10.1016/j.tim.2011.04.005
  90. Kolayli F, Gacar G, Karadenizli A, Sanic A, Vahaboglu H; Study Group. PER-1 is still widespread in Turkish hospitals among Pseudomonas aeruginosa and Acinetobacter spp. FEMS Microbiol Lett 2005;249:241-245. https://doi.org/10.1016/j.femsle.2005.06.012
  91. Naas T, Poirel L, Karim A, Nordmann P. Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa. FEMS Microbiol Lett 1999;176:411-419.
  92. Cornaglia G, Giamarellou H, Rossolini GM. Metallo-$\beta$- lactamases: a last frontier for $\beta$-lactams? Lancet Infect Dis 2011;11:381-393. https://doi.org/10.1016/S1473-3099(11)70056-1
  93. Crespo MP, Woodford N, Sinclair A, et al. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-beta-lactamase, in a tertiary care center in Cali, Colombia. J Clin Microbiol 2004;42:5094-5101. https://doi.org/10.1128/JCM.42.11.5094-5101.2004
  94. Silva FM, Carmo MS, Silbert S, Gales AC. SPM-1-producing Pseudomonas aeruginosa: analysis of the ancestor relationship using multilocus sequence typing, pulsed-field gel electrophoresis, and automated ribotyping. Microb Drug Resist 2011;17:215-220. https://doi.org/10.1089/mdr.2010.0140
  95. Pitt TL, Livermore DM, Pitcher D, Vatopoulos AC, Legakis NJ. Multiresistant serotype O 12 Pseudomonas aeruginosa: evidence for a common strain in Europe. Epidemiol Infect 1989;103:565-576. https://doi.org/10.1017/S095026880003096X
  96. Lee K, Park AJ, Kim MY, et al. Metallo-beta-lactamase-producing Pseudomonas spp. in Korea: high prevalence of isolates with VIM-2 type and emergence of isolates with IMP-1 type. Yonsei Med J 2009;50:335-339. https://doi.org/10.3349/ymj.2009.50.3.335
  97. Seok Y, Bae IK, Jeong SH, Kim SH, Lee H, Lee K. Dissemination of IMP-6 metallo-$\beta$-lactamase-producing Pseudomonas aeruginosa sequence type 235 in Korea. J Antimicrob Chemother 2011;66:2791-2796. https://doi.org/10.1093/jac/dkr381
  98. Gurung M, Moon DC, Tamang MD, et al. Emergence of 16S rRNA methylase gene armA and cocarriage of bla(IMP-1) in Pseudomonas aeruginosa isolates from South Korea. Diagn Microbiol Infect Dis 2010;68:468-470. https://doi.org/10.1016/j.diagmicrobio.2010.07.021
  99. Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 2006;12:826-836. https://doi.org/10.1111/j.1469-0691.2006.01456.x
  100. Turton JF, Ward ME, Woodford N, et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 2006;258:72-77. https://doi.org/10.1111/j.1574-6968.2006.00195.x
  101. Poirel L, Figueiredo S, Cattoir V, Carattoli A, Nordmann P. Acinetobacter radioresistens as a silent source of carbapenem resistance for Acinetobacter spp. Antimicrob Agents Chemother 2008;52:1252-1256. https://doi.org/10.1128/AAC.01304-07
  102. Park YK, Choi JY, Jung SI, et al. Two distinct clones of carbapenem- resistant Acinetobacter baumannii isolates from Korean hospitals. Diagn Microbiol Infect Dis 2009;64:389-395. https://doi.org/10.1016/j.diagmicrobio.2009.03.029
  103. Walsh TR. Clinically significant carbapenemases: an update. Curr Opin Infect Dis 2008;21:367-371. https://doi.org/10.1097/QCO.0b013e328303670b
  104. Lee K, Yum JH, Yong D, et al. Novel acquired metallo-betalactamase gene, bla(SIM-1), in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother 2005;49:4485-4491. https://doi.org/10.1128/AAC.49.11.4485-4491.2005
  105. Fournier PE, Vallenet D, Barbe V, et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2006;2:e7. https://doi.org/10.1371/journal.pgen.0020007
  106. Adams MD, Goglin K, Molyneaux N, et al. Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol 2008;190:8053-8064. https://doi.org/10.1128/JB.00834-08
  107. Beceiro A, Llobet E, Aranda J, et al. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother 2011;55:3370-3379. https://doi.org/10.1128/AAC.00079-11
  108. Henry R, Vithanage N, Harrison P, et al. Colistin-resistant, lipopolysaccharide-deficient Acinetobacter baumannii responds to lipopolysaccharide loss through increased expression of genes involved in the synthesis and transpor t of lipoproteins, phospholipids, and poly- $\beta$-1,6- N-acetylglucosamine. Antimicrob Agents Chemother 2012;56:59-69. https://doi.org/10.1128/AAC.05191-11
  109. Hornsey M, Ellington MJ, Doumith M, et al. AdeABCmediated efflux and tigecycline MICs for epidemic clones of Acinetobacter baumannii. J Antimicrob Chemother 2010;65:1589-1593. https://doi.org/10.1093/jac/dkq218
  110. Chisholm SA, Mouton JW, Lewis DA, Nichols T, Ison CA, Livermore DM. Cephalosporin MIC creep among gonococci: time for a pharmacodynamic rethink? J Antimicrob Chemother 2010;65:2141-2148. https://doi.org/10.1093/jac/dkq289
  111. Lee SG, Lee H, Jeong SH, et al. Various penA mutations together with mtrR, porB and ponA mutations in Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime or ceftriaxone. J Antimicrob Chemother 2010;65:669-675. https://doi.org/10.1093/jac/dkp505
  112. Chisholm SA, Alexander S, Desouza-Thomas L, et al. Emergence of a Neisseria gonorrhoeae clone showing decreased susceptibility to cefixime in England and Wales. J Antimicrob Chemother 2011;66:2509-2512. https://doi.org/10.1093/jac/dkr332
  113. Bignell C, Fitzgerald M; Guideline Development Group; British Association for Sexual Health and HIV UK. UK national guideline for the management of gonorrhoea in adults, 2011. Int J STD AIDS 2011;22:541-547. https://doi.org/10.1258/ijsa.2011.011267
  114. Ohnishi M, Golparian D, Shimuta K, et al. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea? Detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 2011;55:3538-3545. https://doi.org/10.1128/AAC.00325-11
  115. Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother 2012;56:1273-1280. https://doi.org/10.1128/AAC.05760-11
  116. Yahav D, Lador A, Paul M, Leibovici L. Efficacy and safety of tigecycline: a systematic review and meta-analysis. J Antimicrob Chemother 2011;66:1963-1971. https://doi.org/10.1093/jac/dkr242
  117. Livermore DM. Doripenem: antimicrobial profile and clinical potential. Diagn Microbiol Infect Dis 2009;63:455-458. https://doi.org/10.1016/j.diagmicrobio.2009.02.012
  118. Livermore DM, Mushtaq S, Ge Y, Warner M. Activity of cephalosporin CXA-101 (FR264205) against Pseudomonas aeruginosa and Burkholderia cepacia group strains and isolates. Int J Antimicrob Agents 2009;34:402-406. https://doi.org/10.1016/j.ijantimicag.2009.03.021
  119. Sader HS, Rhomberg PR, Farrell DJ, Jones RN. Antimicrobial activity of CXA-101, a novel cephalosporin tested in combination with tazobactam against Enterobacteriaceae, Pseudomonas aeruginosa, and Bacteroides fragilis strains having various resistance phenotypes. Antimicrob Agents Chemother 2011;55:2390-2394. https://doi.org/10.1128/AAC.01737-10
  120. Livermore DM, Mushtaq S, Warner M, et al. Activities of NXL104 combinations with ceftazidime and aztreonam against carbapenemase: producing Enterobacteriaceae. Antimicrob Agents Chemother 2011;55:390-394. https://doi.org/10.1128/AAC.00756-10
  121. Armstrong ES, Miller GH. Combating evolution with intelligent design: the neoglycoside ACHN-490. Curr Opin Microbiol 2010;13:565-573. https://doi.org/10.1016/j.mib.2010.09.004
  122. Livermore DM, Mushtaq S, Ge Y. Chequerboard titration of cephalosporin CXA-101 (FR264205) and tazobactam versus beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 2010;65:1972-1974. https://doi.org/10.1093/jac/dkq248
  123. Baker SJ, Tomsho JW, Benkovic SJ. Boron-containing inhibitors of synthetases. Chem Soc Rev 2011;40:4279-4285. https://doi.org/10.1039/c0cs00131g
  124. Xiao XY, Hunt DK, Zhou J, et al. Fluorocyclines. 1.7-fluoro- 9-pyrrolidinoacetamido-6-demethyl-6-deoxytetracycline: a potent, broad spectrum antibacterial agent. J Med Chem 2012;55:597-605. https://doi.org/10.1021/jm201465w
  125. Masterton RG. The new treatment paradigm and the role of carbapenems. Int J Antimicrob Agents 2009;33:105-110.
  126. Kumar A. Optimizing antimicrobial therapy in sepsis and septic shock. Crit Care Clin 2009;25:733-751. https://doi.org/10.1016/j.ccc.2009.08.004
  127. Soo Hoo GW, Wen YE, Nguyen TV, Goetz MB. Impact of clinical guidelines in the management of severe hospitalacquired pneumonia. Chest 2005;128:2778-2787. https://doi.org/10.1378/chest.128.4.2778
  128. Gaibani P, Rossini G, Ambretti S, et al. Blood culture systems: rapid detection-how and why? Int J Antimicrob Agents 2009;34 Suppl 4:S13-S15.
  129. Dierkes C, Ehrenstein B, Siebig S, Linde HJ, Reischl U, Salzberger B. Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis. BMC Infect Dis 2009;9:126. https://doi.org/10.1186/1471-2334-9-126
  130. Vince A, Lepej SZ, Barsic B, et al. LightCycler SeptiFast assay as a tool for the rapid diagnosis of sepsis in patients during antimicrobial therapy. J Med Microbiol 2008;57(Pt 10):1306-1307. https://doi.org/10.1099/jmm.0.47797-0

피인용 문헌

  1. Fecal Carriage of ESBL-Producing E. coli and K. pneumoniae in Children in Guinea-Bissau: A Hospital-Based Cross-Sectional Study vol.7, pp.12, 2012, https://doi.org/10.1371/journal.pone.0051981
  2. The Challenges of Carbapenemase-Producing Enterobacteriaceae and Infection Prevention: Protecting Patients in the Chaos vol.34, pp.7, 2012, https://doi.org/10.1086/671003
  3. The Global Spread of Healthcare-Associated Multidrug-Resistant Bacteria: A Perspective From Asia vol.56, pp.9, 2013, https://doi.org/10.1093/cid/cit020
  4. Tigecycline susceptibility in Klebsiella pneumoniae and Escherichia coli causing neonatal septicaemia (2007–10) and role of an efflux pump in tigecycline non-susceptibility vol.68, pp.5, 2013, https://doi.org/10.1093/jac/dks535
  5. Modulation of respiratory dendritic cells during Klebsiella pneumonia infection vol.14, pp.1, 2013, https://doi.org/10.1186/1465-9921-14-91
  6. Updated molecular epidemiology of carbapenem-non-susceptible Escherichia coli in Taiwan: first identification of KPC-2 or NDM-1-producing E. coli in Taiwan vol.13, pp.None, 2013, https://doi.org/10.1186/1471-2334-13-599
  7. Phenotypic and genotypic comparison of ESBL production by Vaginal Escherichia coli isolates from pregnant and non-pregnant women vol.12, pp.1, 2013, https://doi.org/10.1186/1476-0711-12-7
  8. Carbapenemase-producingEnterobacteriaceae: now that the storm is finally here, how will timely detection help us fight back? vol.8, pp.1, 2012, https://doi.org/10.2217/fmb.12.130
  9. Adjuvant immunotherapies as a novel approach to bacterial infections vol.5, pp.4, 2012, https://doi.org/10.2217/imt.13.17
  10. Multidrug resistant commensal Escherichia coli in animals and its impact for public health vol.4, pp.None, 2012, https://doi.org/10.3389/fmicb.2013.00258
  11. New and alternative approaches to tackling antibiotic resistance vol.5, pp.None, 2012, https://doi.org/10.12703/p5-51
  12. Revolutionising Bacteriology to Improve Treatment Outcomes and Antibiotic Stewardship vol.45, pp.1, 2013, https://doi.org/10.3947/ic.2013.45.1.1
  13. Prescriber and Patient Responsibilities in Treatment of Acute Respiratory Tract Infections — Essential for Conservation of Antibiotics vol.2, pp.2, 2012, https://doi.org/10.3390/antibiotics2020316
  14. CTX-M-type β-lactamases: A successful story of antibiotic resistance vol.303, pp.6, 2013, https://doi.org/10.1016/j.ijmm.2013.02.008
  15. Presence of ESBL/AmpC -Producing Escherichia coli in the Broiler Production Pyramid: A Descriptive Study vol.8, pp.11, 2013, https://doi.org/10.1371/journal.pone.0079005
  16. Aminoglycosides: how should we use them in the 21st century? vol.26, pp.6, 2012, https://doi.org/10.1097/qco.0000000000000012
  17. Occurrence and Genetic Characteristics of Third-Generation Cephalosporin-Resistant Escherichia coli in Swiss Retail Meat vol.20, pp.5, 2014, https://doi.org/10.1089/mdr.2013.0210
  18. Mutant prevention concentrations of colistin for Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae clinical isolates vol.69, pp.1, 2012, https://doi.org/10.1093/jac/dkt315
  19. Molecular screening of carbapenemase-producing Gram-negative strains in Romanian intensive care units during a one year survey vol.63, pp.10, 2012, https://doi.org/10.1099/jmm.0.074039-0
  20. Peptidomimetics as a new generation of antimicrobial agents: current progress vol.7, pp.None, 2012, https://doi.org/10.2147/idr.s49229
  21. The clinical and public health challenge of Gram-negative resistance in Australasia vol.9, pp.1, 2012, https://doi.org/10.2217/fmb.13.144
  22. Phenotypic and Molecular Characterization of Plasmid Mediated AmpC β -Lactamases among Escherichia coli , Klebsiella spp., and Proteus mirabilis Isolated from Urinary Tract Infections in Eg vol.2014, pp.None, 2012, https://doi.org/10.1155/2014/171548
  23. Emerging Rapid Resistance Testing Methods for Clinical Microbiology Laboratories and Their Potential Impact on Patient Management vol.2014, pp.None, 2012, https://doi.org/10.1155/2014/375681
  24. High Rate of Per Oral Mecillinam Treatment Failure in Community-Acquired Urinary Tract Infections Caused by ESBL-Producing Escherichia coli vol.9, pp.1, 2014, https://doi.org/10.1371/journal.pone.0085889
  25. Rates of Fecal Transmission of Extended-Spectrum β-Lactamase-Producing and Carbapenem-Resistant Enterobacteriaceae Among Patients in Intensive Care Units in Korea vol.34, pp.1, 2012, https://doi.org/10.3343/alm.2014.34.1.20
  26. Antimicrobial susceptibility pattern of extended-spectrum β-lactamase-producing bacteria causing nosocomial urinary tract infections in an Iranian referral teaching hospital vol.3, pp.1, 2012, https://doi.org/10.4103/2279-042x.132703
  27. Antibiotic resistance patterns in Escherichia coli from gulls in nine European countries vol.4, pp.1, 2014, https://doi.org/10.3402/iee.v4.21565
  28. Risk Factors and Molecular Epidemiology of Community-Onset Extended-Spectrum β-Lactamase-Producing Escherichia coli Bacteremia vol.55, pp.2, 2012, https://doi.org/10.3349/ymj.2014.55.2.467
  29. Fitness cost associated with resistance to fluoroquinolones is diverse across clones of Klebsiella pneumoniae and may select for CTX-M-15 type extended-spectrum β-lactamase vol.33, pp.5, 2012, https://doi.org/10.1007/s10096-013-2022-6
  30. Emergence of KPC-producing Klebsiella pneumoniae in Uruguay: infection control and molecular characterization vol.2, pp.3, 2014, https://doi.org/10.1002/nmi2.40
  31. Siderophore Receptor-Mediated Uptake of Lactivicin Analogues in Gram-Negative Bacteria vol.57, pp.9, 2012, https://doi.org/10.1021/jm500219c
  32. Combating the spread of carbapenemases in Enterobacteriaceae: a battle that infection prevention should not lose vol.20, pp.9, 2012, https://doi.org/10.1111/1469-0691.12748
  33. Prevalence and impact of extended-spectrum β-lactamase production on clinical outcomes in cancer patients with Enterobacter species bacteremia vol.29, pp.5, 2012, https://doi.org/10.3904/kjim.2014.29.5.637
  34. Functional elucidation of antibacterial phage ORFans targeting Pseudomonas aeruginosa vol.16, pp.12, 2012, https://doi.org/10.1111/cmi.12330
  35. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem vol.5, pp.6, 2012, https://doi.org/10.1177/2042098614554919
  36. Genome Sequence of a Multidrug-Resistant Strain of Klebsiella pneumoniae , BAMC 07-18, Isolated from a Combat Injury Wound vol.2, pp.6, 2012, https://doi.org/10.1128/genomea.01230-14
  37. Comparison of Extended-Spectrum β-Lactamase-ProducingEscherichia coliandKlebsiella pneumoniaeBloodstream Infection Epidemiology vol.19, pp.2, 2012, https://doi.org/10.14192/kjnic.2014.19.2.45
  38. Development of a multiplex PCR system and its application in detection of blaSHV, blaTEM, blaCTX-M-1, blaCTX-M-9 and blaOXA-1 group genes in clinical Klebsiella pneumoniae and Escherichia coli strains vol.68, pp.12, 2012, https://doi.org/10.1038/ja.2015.68
  39. The etiopathogenetic bases for antibacterial therapy and prevention of urinary tract infections vol.87, pp.11, 2012, https://doi.org/10.17116/terarkh20158711123-133
  40. The complex epidemiology of extended-spectrum β-lactamase-producing Enterobacteriaceae vol.10, pp.5, 2012, https://doi.org/10.2217/fmb.15.16
  41. Profiling of antimicrobial resistance and plasmid replicon types in β-lactamase producing Escherichia coli isolated from Korean beef cattle vol.16, pp.4, 2012, https://doi.org/10.4142/jvs.2015.16.4.483
  42. Determination of avibactam and ceftazidime in human plasma samples by LC-MS vol.7, pp.12, 2012, https://doi.org/10.4155/bio.15.76
  43. Epidemiological Characteristics, Resistance Patterns and Spread of Gram-Negative Bacteria Related to Colonization of Patients in Intensive Care Units vol.5, pp.1, 2012, https://doi.org/10.4236/aid.2015.51002
  44. The molecular basis of β-lactamase production in Gram-negative bacteria from Saudi Arabia vol.64, pp.2, 2012, https://doi.org/10.1099/jmm.0.077834-0
  45. The Carbapenem Inactivation Method (CIM), a Simple and Low-Cost Alternative for the Carba NP Test to Assess Phenotypic Carbapenemase Activity in Gram-Negative Rods vol.10, pp.3, 2012, https://doi.org/10.1371/journal.pone.0123690
  46. Mechanism of resistance and antibacterial susceptibility in extended-spectrum β-lactamase phenotype Klebsiella pneumoniae and Klebsiella oxytoca isolated between 2000 and 2010 in Japan vol.64, pp.5, 2015, https://doi.org/10.1099/jmm.0.000057
  47. Four Cases of Carbapenem-Resistant Enterobacteriaceae Infection from January to March in 2014 vol.36, pp.4, 2015, https://doi.org/10.4082/kjfm.2015.36.4.191
  48. Unravelling of a mechanism of resistance to colistin in Klebsiella pneumoniae using atomic force microscopy vol.70, pp.8, 2012, https://doi.org/10.1093/jac/dkv118
  49. Impact of Sepsis Classification and Multidrug-Resistance Status on Outcome Among Patients Treated With Appropriate Therapy* vol.43, pp.8, 2015, https://doi.org/10.1097/ccm.0000000000001013
  50. Instant Typing Is Essential to Detect Transmission of Extended-Spectrum Beta-Lactamase-Producing Klebsiella Species vol.10, pp.8, 2012, https://doi.org/10.1371/journal.pone.0136135
  51. Inhibition of Klebsiella β-Lactamases (SHV-1 and KPC-2) by Avibactam: A Structural Study vol.10, pp.9, 2012, https://doi.org/10.1371/journal.pone.0136813
  52. Genetic Environment of Plasmid Mediated CTX-M-15 Extended Spectrum Beta-Lactamases from Clinical and Food Borne Bacteria in North-Eastern India vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0138056
  53. Biophysical and enzymatic properties of aminoglycoside adenylyltransferase AadA6 from Pseudomonas aeruginosa vol.4, pp.None, 2012, https://doi.org/10.1016/j.bbrep.2015.09.011
  54. Antibiotika-resistente Erreger in Deutschland : Die Rolle von nicht nosokomialen Ansteckungsquellen vol.59, pp.1, 2012, https://doi.org/10.1007/s00103-015-2261-z
  55. Phytochemical profiling as a solution to palliate disinfectant limitations vol.32, pp.9, 2012, https://doi.org/10.1080/08927014.2016.1220550
  56. CTX-M-15-Type Extended-Spectrum Beta-Lactamase-ProducingEscherichia colias Causative Agent of Bovine Mastitis vol.13, pp.9, 2016, https://doi.org/10.1089/fpd.2015.2114
  57. The Molecular Epidemiology and Genetic Environment of Carbapenemases Detected in Africa vol.22, pp.1, 2016, https://doi.org/10.1089/mdr.2015.0053
  58. Multidrug-Resistant Gram-Negative Bacterial Infections in the Hospital Setting: Overview, Implications for Clinical Practice, and Emerging Treatment Options vol.22, pp.5, 2016, https://doi.org/10.1089/mdr.2015.0220
  59. Emerging Perils of Extended Spectrum β -Lactamase Producing Enterobacteriaceae Clinical Isolates in a Teaching Hospital of Nepal vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/1782835
  60. Antibiotic-Resistant Bacteria Are Major Threats of Otitis Media in Wollo Area, Northeastern Ethiopia: A Ten-Year Retrospective Analysis vol.2016, pp.None, 2012, https://doi.org/10.1155/2016/8724671
  61. Molecular Characterization of ESBL-Producing Escherichia Coli Isolated from Healthy Cattle and Sheep vol.66, pp.4, 2012, https://doi.org/10.1515/acve-2016-0045
  62. Susceptibility of Austrian Clinical Klebsiella and Enterobacter Isolates Linked to Patient-Related Data vol.7, pp.None, 2012, https://doi.org/10.3389/fmicb.2016.00034
  63. Bioanalytical method validation for the simultaneous determination of ceftazidime and avibactam in rat plasma vol.8, pp.2, 2016, https://doi.org/10.4155/bio.15.233
  64. Vaginal versus Obstetric Infection Escherichia coli Isolates among Pregnant Women: Antimicrobial Resistance and Genetic Virulence Profile vol.11, pp.1, 2012, https://doi.org/10.1371/journal.pone.0146531
  65. Phenotypic and genotypic detection of -lactams resistance in Klebsiella species from Egyptian hospitals revealed carbapenem resistance by OXA and NDM genes vol.10, pp.10, 2012, https://doi.org/10.5897/ajmr2015.7871
  66. Evidence for Direct Control of Virulence and Defense Gene Circuits by the Pseudomonas aeruginosa Quorum Sensing Regulator, MvfR vol.6, pp.None, 2012, https://doi.org/10.1038/srep34083
  67. Aminoacyl β-naphthylamides as substrates and modulators of AcrB multidrug efflux pump vol.113, pp.5, 2012, https://doi.org/10.1073/pnas.1525143113
  68. Rates of gastrointestinal tract colonization of carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa in hospitals in Saudi Arabia vol.10, pp.None, 2016, https://doi.org/10.1016/j.nmni.2016.01.014
  69. In vitro antimicrobial activity of S-649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting Gram-negative bacteria vol.71, pp.3, 2012, https://doi.org/10.1093/jac/dkv402
  70. Comparison of two chromogenic media and enrichment broth for the detection of carbapenemase-producing Enterobacteriaceae on screening rectal swabs from hospitalized patients vol.65, pp.5, 2016, https://doi.org/10.1099/jmm.0.000244
  71. Comparison of rates of fecal colonization with extended‐spectrum beta‐lactamase‐producing enterobacteria among patients in different wards, outpatients and medical students vol.60, pp.5, 2012, https://doi.org/10.1111/1348-0421.12373
  72. Characterization of ESBL- and AmpC-Producing and Fluoroquinolone-Resistant Enterobacteriaceae Isolated from Mouflons ( Ovis orientalis musimon ) in Austria and Germany vol.11, pp.5, 2012, https://doi.org/10.1371/journal.pone.0155786
  73. Epidemiology of antimicrobial resistance in bloodstream infections vol.7, pp.3, 2016, https://doi.org/10.1080/21505594.2016.1159366
  74. Detection of Healthcare-Related Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Transmission Events Using Combined Genetic and Phenotypic Epidemiology vol.11, pp.7, 2012, https://doi.org/10.1371/journal.pone.0160156
  75. Molecular Characterization of Multidrug Resistant Clinical Escherichia coli Isolates vol.6, pp.3, 2016, https://doi.org/10.3923/ajbmb.2016.72.83
  76. β-Lactams and β-Lactamase Inhibitors: An Overview vol.6, pp.8, 2016, https://doi.org/10.1101/cshperspect.a025247
  77. Improving outcomes in the management of Gram-negative bacterial infections in the face of growing antimicrobial resistance vol.11, pp.10, 2016, https://doi.org/10.2217/fmb-2016-0155
  78. Siderophore Cephalosporin Cefiderocol Utilizes Ferric Iron Transporter Systems for Antibacterial Activity against Pseudomonas aeruginosa vol.60, pp.12, 2012, https://doi.org/10.1128/aac.01405-16
  79. Prevalence and characterization of extended-spectrum beta-lactamases producing Enterobacteriaceae in healthy children and associated risk factors vol.15, pp.1, 2012, https://doi.org/10.1186/s12941-016-0121-9
  80. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriace vol.66, pp.12, 2012, https://doi.org/10.1099/ijsem.0.001485
  81. Silver Nanoparticles Against Salmonella enterica Serotype Typhimurium: Role of Inner Membrane Dysfunction vol.74, pp.6, 2012, https://doi.org/10.1007/s00284-017-1235-9
  82. Association between dementia and reduced walking ability and 30-day mortality in patients with extended-spectrum beta-lactamase-producing Escherichia coli bacteremia vol.36, pp.12, 2012, https://doi.org/10.1007/s10096-017-3077-6
  83. Endotoxin neutralization by an O-antigen specific monoclonal antibody: A potential novel therapeutic approach against Klebsiella pneumoniae ST258 vol.8, pp.7, 2012, https://doi.org/10.1080/21505594.2017.1279778
  84. First Report of Extended-Spectrum β-Lactamases Among Clinical Isolates of Klebsiella pneumoniae in Gaza Strip, Palestine vol.23, pp.2, 2017, https://doi.org/10.1089/mdr.2016.0089
  85. Prevalence of Carbapenem-Resistant Gram-Negative Infections in the United States Predominated by Acinetobacter baumannii and Pseudomonas aeruginosa vol.4, pp.3, 2012, https://doi.org/10.1093/ofid/ofx176
  86. The study of the role of mutations M182T and Q39K in the TEM-72 β-lactamase structure by the molecular dynamics method vol.11, pp.2, 2017, https://doi.org/10.1134/s1990750817020056
  87. High rates of multidrug resistance among uropathogenic Escherichia coli in children and analyses of ESBL producers from Nepal vol.6, pp.None, 2017, https://doi.org/10.1186/s13756-016-0168-6
  88. Antibacterial Resistance in Patients with Hematopoietic Stem Cell Transplantation vol.9, pp.1, 2017, https://doi.org/10.4084/mjhid.2017.002
  89. New Delhi metallo-β-lactamase - type carbapenemases producing Escherichia coli isolates from hospitalized patients: A pilot study vol.146, pp.1, 2017, https://doi.org/10.4103/ijmr.ijmr_594_15
  90. Mechanisms of inflammation-driven bacterial dysbiosis in the gut vol.10, pp.1, 2017, https://doi.org/10.1038/mi.2016.75
  91. Detection of acrA, acrB, aac(6′)-Ib-cr, and qepA genes among clinical isolates of Escherichia coli and Klebsiella pneumoniae vol.64, pp.1, 2012, https://doi.org/10.1556/030.63.2016.011
  92. Detection of acrA, acrB, aac(6′)-Ib-cr, and qepA genes among clinical isolates of Escherichia coli and Klebsiella pneumoniae vol.64, pp.1, 2012, https://doi.org/10.1556/030.63.2016.011
  93. Intravenous fosfomycin for the treatment of hospitalized patients with serious infections vol.15, pp.10, 2017, https://doi.org/10.1080/14787210.2017.1379897
  94. Prevalence of Quinolone Resistance Genes in Klebsiella pneumoniae Strains Isolated from Hospitalized Patients During 2013 - 2014 vol.5, pp.4, 2012, https://doi.org/10.5812/pedinfect.38343
  95. Spectrum of pathogen- and model-specific histopathologies in mouse models of acute pneumonia vol.12, pp.11, 2012, https://doi.org/10.1371/journal.pone.0188251
  96. First report on bla NDM-1 -producing Acinetobacter baumannii in three clinical isolates from Ethiopia vol.17, pp.None, 2012, https://doi.org/10.1186/s12879-017-2289-9
  97. Molecular characterization of Klebsiella pneumoniae isolates from stool specimens of outpatients in sentinel hospitals Beijing, China, 2010–2015 vol.9, pp.None, 2017, https://doi.org/10.1186/s13099-017-0188-7
  98. High burden of antimicrobial resistance among gram negative bacteria causing healthcare associated infections in a critical care unit of Nepal vol.6, pp.1, 2012, https://doi.org/10.1186/s13756-017-0222-z
  99. Activity of Ertapenem against Enterobacteriaceae in seven global regions-SMART 2012-2016 vol.37, pp.8, 2012, https://doi.org/10.1007/s10096-018-3274-y
  100. Extended-Spectrum Beta-Lactamase-/AmpC Beta-Lactamase-Producing Enterobacteriaceae in Broiler Farms: Transmission Dynamics at Farm Level vol.24, pp.4, 2012, https://doi.org/10.1089/mdr.2017.0150
  101. Comprehensive Evaluation of the MBT STAR-BL Module for Simultaneous Bacterial Identification and β-Lactamase-Mediated Resistance Detection in Gram-Negative Rods from Cultured Isolates and Positiv vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.00334
  102. Treatment of Prosthetic Joint Infection with Debridement, Antibiotics and Irrigation with Implant Retention - a Narrative Review vol.3, pp.3, 2012, https://doi.org/10.7150/jbji.24285
  103. RAPD PCR Profile, Antibiotic Resistance, Prevalence of armA Gene, and Detection of KPC Enzyme in Klebsiella pneumoniae Isolates vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/6183162
  104. Ugly bugs in healthy guts! Carriage of multidrug-resistant and ESBL-producing commensal Enterobacteriaceae in the intestine of healthy Nepalese adults vol.11, pp.None, 2012, https://doi.org/10.2147/idr.s156593
  105. Multiplex identification of sepsis‐causing Gram‐negative pathogens from the plasma of infected blood vol.39, pp.4, 2012, https://doi.org/10.1002/elps.201700405
  106. Pharmacokinetics, Safety, and Tolerability of Cefiderocol, a Novel Siderophore Cephalosporin for Gram-Negative Bacteria, in Healthy Subjects vol.62, pp.3, 2018, https://doi.org/10.1128/aac.02163-17
  107. CTX-M-15 is Established in Most Multidrug-Resistant Uropathogenic Enterobacteriaceae and Pseudomonaceae from Hospitals in Nigeria vol.8, pp.1, 2012, https://doi.org/10.1556/1886.2017.00012
  108. Carbapenem Resistance: A Review vol.6, pp.1, 2018, https://doi.org/10.3390/medsci6010001
  109. Global survey of Klebsiella pneumoniae major porins from ertapenem non-susceptible isolates lacking carbapenemases vol.67, pp.3, 2012, https://doi.org/10.1099/jmm.0.000691
  110. Molecular Properties That Define the Activities of Antibiotics in Escherichia coli and Pseudomonas aeruginosa vol.4, pp.8, 2012, https://doi.org/10.1021/acsinfecdis.8b00036
  111. Trends and correlation between antibiotic usage and resistance pattern among hospitalized patients at university hospitals in Korea, 2004 to 2012 : A nationwide multicenter study vol.97, pp.51, 2018, https://doi.org/10.1097/md.0000000000013719
  112. A Probabilistic Transmission Model for the Spread of Extended‐Spectrum‐β‐Lactamase and AmpC‐β‐Lactamase‐Producing Escherichia Coli in the Broiler Producti vol.38, pp.12, 2018, https://doi.org/10.1111/risa.13145
  113. Interplay between Peptidoglycan Biology and Virulence in Gram-Negative Pathogens vol.82, pp.4, 2012, https://doi.org/10.1128/mmbr.00033-18
  114. Detection of CTX-M-15 harboring Escherichia coli isolated from wild birds in Tunisia vol.18, pp.None, 2012, https://doi.org/10.1186/s12866-018-1163-2
  115. Prevalence of extended-spectrum-β-lactamase-producing Enterobacteriaceae : first systematic meta-analysis report from Pakistan vol.7, pp.1, 2012, https://doi.org/10.1186/s13756-018-0309-1
  116. The knowledge, attitudes and practices of doctors regarding antibiotic resistance at a tertiary care institution in the Caribbean vol.7, pp.1, 2012, https://doi.org/10.1186/s13756-018-0315-3
  117. Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea vol.57, pp.3, 2012, https://doi.org/10.1007/s12275-019-8491-2
  118. Antibiotic Resistance of Isolated Gram Negative Bacilli from Different Clinical Sample in a Central Teaching Hospital of Pediatric in Baghdad vol.13, pp.1, 2012, https://doi.org/10.22207/jpam.13.1.38
  119. Edaphovirga cremea gen. nov., sp. nov., isolated from the rhizospheric soil of Codonopsis clematidea vol.57, pp.5, 2012, https://doi.org/10.1007/s12275-019-8408-0
  120. Phenotypic and Genotypic Characterization of Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Asymptomatic Bacteriuria in Pregnancy vol.25, pp.5, 2012, https://doi.org/10.1089/mdr.2018.0088
  121. Water quality assessment and plasmid analysis of multiple antibiotic-resistant Escherichia coli O157:H7 from well-water sources in Ado-Ekiti metropolis, Nigeria vol.19, pp.4, 2012, https://doi.org/10.2166/ws.2018.183
  122. Compassionate Use of Cefiderocol as Adjunctive Treatment of Native Aortic Valve Endocarditis Due to Extremely Drug-resistant Pseudomonas aeruginosa vol.68, pp.11, 2019, https://doi.org/10.1093/cid/ciy963
  123. Effect of Glutathione, Ascorbic Acid and Multivitamins on Sensitivity of Norfloxacin against Pseudomonas aeruginosa and Klebsiella pneumoniae vol.13, pp.2, 2012, https://doi.org/10.22207/jpam.13.2.18
  124. A new rapid method for detecting extended-spectrum beta-lactamase/AmpC-producing Enterobacteriaceae directly from positive blood cultures using the Uro4 HB&L™ system vol.50, pp.4, 2019, https://doi.org/10.1007/s42770-019-00103-4
  125. Advantage of the F2:A1:B- IncF Pandemic Plasmid over IncC Plasmids in In Vitro Acquisition and Evolution of blaCTX-M Gene-Bearing Plasmids in Escherichia coli vol.63, pp.10, 2012, https://doi.org/10.1128/aac.01130-19
  126. Impact of a Prospective Audit and Feedback Antimicrobial Stewardship Program in Pediatric Units in Tertiary Care Teaching Hospital in Thailand vol.9, pp.11, 2019, https://doi.org/10.1542/hpeds.2019-0027
  127. Molecular detection and antibiotic resistance pattern of extended-spectrum beta-lactamase producing Escherichia coli in a Tertiary Hospital in Enugu, Nigeria vol.18, pp.1, 2019, https://doi.org/10.1186/s12941-019-0342-9
  128. Extended spectrum β-lactamase producing enterobacteriaceae: carbapenem sparing options vol.17, pp.12, 2012, https://doi.org/10.1080/14787210.2019.1693258
  129. Yoğun bakım ünitesinde bakteriyemi tanısı ile takip edilen hastaların değerlendirilmesi vol.44, pp.1, 2019, https://doi.org/10.17826/cumj.623795
  130. Comparison of Ceftizoxime Plus Ampicillin-Sulbactam versus Gentamicin Plus Ampicillin-Sulbactam in the Prevention of Post-Transplant Early Bacterial Infections in Liver Transplant Recipients: A Random vol.13, pp.None, 2012, https://doi.org/10.2147/idr.s222934
  131. Prevalence and Molecular Characteristics of Extended-Spectrum and AmpC β-Lactamase Producing Escherichia coli in Grazing Beef Cattle vol.10, pp.None, 2020, https://doi.org/10.3389/fmicb.2019.03076
  132. Comprehensive exploration of the translocation, stability and substrate recognition requirements in VIM-2 lactamase vol.9, pp.None, 2012, https://doi.org/10.7554/elife.56707
  133. In vitro Activity of Robenidine Analog NCL195 in Combination With Outer Membrane Permeabilizers Against Gram-Negative Bacterial Pathogens and Impact on Systemic Gram-Positive Bacterial Infection in M vol.11, pp.None, 2012, https://doi.org/10.3389/fmicb.2020.01556
  134. Frequency of Antimicrobial Resistance Genes in Salmonella From Brazil by in silico Whole-Genome Sequencing Analysis: An Overview of the Last Four Decades vol.11, pp.None, 2012, https://doi.org/10.3389/fmicb.2020.01864
  135. Extended-Spectrum β -Lactamase (ESBL) Genotypes among Multidrug-Resistant Uropathogenic Escherichia coli Clinical Isolates from a Teaching Hospital of Nepal vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/6525826
  136. Ten-year trends in antibiotic usage at a tertiary care hospital in Korea, 2004 to 2013 vol.35, pp.3, 2012, https://doi.org/10.3904/kjim.2017.332
  137. Communication training and the prescribing pattern of antibiotic prescription in primary health care vol.15, pp.5, 2020, https://doi.org/10.1371/journal.pone.0233345
  138. Pathogens of peritoneal dialysis peritonitis: Trends from a single-center experience over 15 years vol.39, pp.2, 2020, https://doi.org/10.23876/j.krcp.19.035
  139. Infections Caused by Carbapenem-Resistant Enterobacterales: Epidemiology, Clinical Significance, and Possibilities for Antibiotic Therapy Optimization vol.65, pp.5, 2012, https://doi.org/10.37489/0235-2990-2020-65-5-6-41-69
  140. High frequency of colonization by diverse clones of beta-lactam-resistant Gram-negative bacilli in haemodialysis: different sources of transmission outside the renal unit? vol.69, pp.9, 2012, https://doi.org/10.1099/jmm.0.001244
  141. A high prevalence of multi-drug resistant Gram-negative bacilli in a Nepali tertiary care hospital and associated widespread distribution of Extended-Spectrum Beta-Lactamase (ESBL) and carbapenemase-e vol.19, pp.1, 2012, https://doi.org/10.1186/s12941-020-00390-y
  142. Overview vol.34, pp.4, 2012, https://doi.org/10.1016/j.idc.2020.04.002
  143. A Novel Antibiotic Agent, Cefiderocol, for Multidrug-Resistant Gram-Negative Bacteria vol.50, pp.4, 2012, https://doi.org/10.4167/jbv.2020.50.4.218
  144. Clinical and Microbiologic Efficacy and Safety of Imipenem/Cilastatin/Relebactam in Complicated Infections: A Meta-analysis vol.53, pp.2, 2012, https://doi.org/10.3947/ic.2021.0051
  145. Genetic analysis of ESBL-producing Klebsiella pneumoniae isolated from UTI patients in Indonesia vol.27, pp.1, 2021, https://doi.org/10.1016/j.jiac.2020.08.007
  146. Propofol Ameliorates Exaggerated Human Neutrophil Activation in a LPS Sepsis Model vol.14, pp.None, 2021, https://doi.org/10.2147/jir.s314192
  147. CTX-M-type ESBL-mediated resistance to third-generation cephalosporins and conjugative transfer of resistance in Gram-negative bacteria isolated from hospitals in Tamil Nadu, India vol.3, pp.3, 2021, https://doi.org/10.1099/acmi.0.000142
  148. The Role of Antibiotic Resistant A. baumannii in the Pathogenesis of Urinary Tract Infection and the Potential of Its Treatment with the Use of Bacteriophage Therapy vol.10, pp.3, 2012, https://doi.org/10.3390/antibiotics10030281
  149. In vitro activity of cefiderocol and comparators against isolates of Gram-negative pathogens from a range of infection sources: SIDERO-WT-2014–2018 studies in France vol.3, pp.2, 2012, https://doi.org/10.1093/jacamr/dlab081
  150. Molecular study to detect blaTEM and blaCTx-M genes in ESpL Escherichia coli and their antimicrobial resistance profile vol.1879, pp.2, 2012, https://doi.org/10.1088/1742-6596/1879/2/022051
  151. Retracted: Does Fluoroquinolones and Third-Generation Cephalosporins Restriction Reverse Extended-Spectrum β-Lactamases Klebsiella pneumoniae Resistance Rates? vol.27, pp.9, 2012, https://doi.org/10.1089/mdr.2020.0301
  152. Molecular Characterization of Carbapenem-resistant, Colistin-resistant Klebsiella pneumoniae Isolates from a Tertiary Hospital in Jeonbuk, Korea vol.51, pp.3, 2012, https://doi.org/10.4167/jbv.2021.51.3.120
  153. Antibiotic susceptibility profile of bacterial isolates from febrile children under 5 years of age in Nanoro, Burkina Faso vol.26, pp.10, 2012, https://doi.org/10.1111/tmi.13644
  154. In-Vitro Efficacy of Cefiderocol in Carbapenem-Non-Susceptible Gram-Negative Bacilli of Different Genotypes in Sub-Region of North Rhine Westphalia, Germany vol.10, pp.10, 2021, https://doi.org/10.3390/pathogens10101258
  155. Prospects for Antibacterial Discovery and Development vol.143, pp.50, 2012, https://doi.org/10.1021/jacs.1c10200