
情報保護學 論文誌

第 22卷 第 6號, 2012. 12

동 피어 그룹을 한 삼진 트리방식의

인증된 그룹 키 합의 로토콜*

김 호 희,†‡ 김 순 자

경북 학교 IT 학 자공학부

A Ternary Tree-based Authenticated Group Key Agreement

For Dynamic Peer Group

Ho-hee Kim,
†‡

 Soon-ja Kim

Kyungpook National University

요 약

그룹응용이 늘어감에 따라 효율 인 인증 그룹 키 합의 로토콜이 많은 심을 받고 있다. Lee et al.는 삼진트리

구조와 pairing기반의 암호방식을 가진 트리기반의 그룹 키 합의 로토콜을 제안했다. 그들의 로토콜은, 모든 멤

버들의 세션랜덤 키를 아는 오직 한 명의 그룹 스폰서가 블라인드 키들을 계산한다. , 그 스폰서가 그룹을 떠나면,

트리의 모든 정보가 바 어져야 한다. 본 논문에서 제안하는 로토콜은 여러 명의 스폰서를 두었고, 각 멤버의 비

정보가 그룹스폰서에게 알려지지 않으므로 그룹스폰서가 떠났을 때, 키 갱신이 Lee et al.의 로토콜보다 훨씬 효율

이다. 그러므로, 제안된 로토콜은 동 피어 그룹에 합하다.

ABSTRACT

As a result of the increased popularity of group oriented applications, the design of an efficient authenticated group key

agreement protocol has received a lot of attention. Lee et al. proposed a tree-based group key agreement protocol, which

applies a ternary key tree structure and pairing-based cryptography to the key agreement of Dynamic Peer Group. In their

protocol, only the group sponsor knows all member's session random keys computes all blinded keys. In addition, when the

group sponsor leaves a group, all nodes of the tree should be changed. In this paper, we present the modified protocol that

has several sponsors. Since a secret value for each member isn't given to the group sponsor, the key renewing of our protocol

is more secure and efficient than that of Lee et al.'s protocol in the previous case. Therefore, our protocol is suitable to

Dynamic Peer Groups.

Keywords: Ternary Tree, Bilinear Pairings

I. Introduction

Background. In many modern collabo-

수일(2012년 7월 5일), 수정일(2012년 9월 10일),

게재확정일(2012년 10월 30일)

† 주 자, brtcloud@naver.com

‡교신 자, brtcloud@naver.com

rative and distributed applications such as

multicast communication, audio-video confer-

ence and collaboration tools, scalable and

reliable group communication is a primary

concern. An authenticated group key agree-

ment (AGKA) protocol allows a group of

authenticated users to share a key, which may

later be used to achieve some cryptographic

1254 동 피어 그룹을 한 삼진 트리방식의 인증된 그룹 키 합의 로토콜

goals. In order to provide authentication,

certificatebased systems or ID-based sys-

tems are commonly used. In a typical cer-

tificatebased system, a user should obtain a

certificate of a long-lived public key from

the certifying authority and the entities

must verify the certificate of the user before

using the public key of a user. Whereas in

an ID-based system, the partner just has to

know the public identity of the user such as

an e-mail address. Many ID-based crypto-

system schemes using bilinear pairing have

been proposed[1]. Joux proposed a single

round tripartite key agreement using Weil

and Tate pairings but unauthenticated[2].

Another direction of research on group key

agreement is to handle membership changes

in the Dynamic Peer Group(DPG), in which

the communicating party can be frequently

changed. A group key agreement scheme in

a dynamic group must ensure that the session

key is updated upon every membership

change so that subsequent communication

sessions are protected from leaving members

and previous communication sessions are

protected from joining members. Although

this can be achieved by running any authen-

ticated group key agreement protocol whe-

never group membership changes, alternative

approaches to handle this dynamic member-

ship more effectively would be clearly

preferable in order to minimize cost of the

key renewing operations associated with

group updates. An arrangement of partici-

pants for key agreement is to consider

tree-based setting which requires

rounds and has some computational advan-

tages. There have been quite a number of

tree based key agreement protocols[4-10].

Related Work. Many ID-based group key

agreement protocols which use the one-way

function trees and pairing are proposed

[7-10]. Kim et al. proposed a secure, simple

and efficient key management method, called

TGDH (Tree-based Group Diffie-Hellman)

protocol[4], which uses a binary key tree

with Diffie-Hellman key exchange to effi-

ciently compute and update group keys[3].

The computation cost of tree-based key

management is proportional to the height of

configured key tree. Lee et al. extended

TGDH using a ternary key tree and Joux's

one round authenticated tripartite protocol[7].

Lee et al.'s protocol could reduce the com-

putation cost of TGDH to .

But, Lee et al.'s protocol has several

operating flaws. First, it is dangerous the

group sponsor to know session random keys

of all members. When the group sponsor

leaves a group, all nodes of the tree should

be changed completely. Second, in a

distributed network, it is not suitable for a

group sponsor to be solely responsible of

computing all key values and broadcasting

them. Finally, Lee et al.'s protocol does not

have authentication process of any kind.

Wu et al. added this process to TGDH

protocol using timestamping[10]. However,

the group sponsor of Wu et al.'s protocol

has the ability to learn the session random

key of each member as well. Phan et al.'s

pointed out that Lee et al.'s protocol is

weak against insider or outsider attack[14].

Because there is no verification process for

member authentication and message integrity.

Contribution. In this paper, we modify

Lee et al.'s protocol so that the group

sponsor can not learn the session random

keys of members. Thus, the group sponsor

can not impersonate any member to other

members. Even if the group sponsor leaves

a group, the next group sponsor does not

need to obtain new session random keys

and can reuse the session random keys of

remaining members. Therefore, the commu-

nication and computation costs of the key

renewing can be reduced significantly. In

addition, our protocol distributes the loads

情報保護學 論文誌 (2012. 12) 1255

n Number of group members

 i-th group member

h The height of the key tree

< l, v > v-th node at the level l-th in a tree

 's session random number

 Key of node < l, v >

 Set of keys of nodes on his key-path

of

 Blinded key of node <l, v>

 Set of 's blinded keys

 Hash function, H : →

 Hash function, H1 : →

[Table 1] Notations

among its members and performs an implicit

authentication process to protect the man-

in-the-middle attack.

II. Bilinear Pairings

Let be an additive group generated by

, whose order is a prime , and be a

multiplicative group of the same order .

We assume that the discrete logarithm

problem (DLP) in both and is hard. Let

 ×→ be a pairing which satisfies the

following conditions:

1. Bilinear: ,

2. Non-degenerate: The map does not

send all pairs in × to the identity in

. Observe that since , are groups of

prime order this implies that if is a gener-

ator of then is a generator of .

3. Computability: There is an efficient

algorithm to compute for all ∈.
BDH Problem : The Bilinear Diffie-

Hellman(BDH) Problem for a bilinear map

 ×→ is defined as follows: given

 ∈, compute ,

where are randomly chosen from
. An

algorithm A is said to solve the BDH

problem with an advantage of if

 ≥

BDH Assumption : We assume that the

BDH problem is hard, which means there is

no polynomial algorithm to solve BDH

problem with non-negligible probability.

III. Lee et al.'s Tree-based Group

Diffie-Hellman protocol

Lee et al. proposed a tree-based group

key agreement protocol which employs the

concept of pairing to achieve ID-based key

establishment and a ternary tree structure

to apply Joux's one round authenticated

tripartite protocol[2][7]. Each member

contributes a secret value to establish the

group session key.

[Table 1] shows the notations used.

The root is located at the 0-th level and

the lowest leaves are at the h-th level. The

node are denoted <l, v>, where ≤≤ .

Each node <l, v> is associated with the key

 and the blinded key(bkey)

 .

The multiplication is obtained by

repeating k times addition over an elliptic

curve. For the leaf node, the and

 , where is the session random

key selected by the member ≤≤.

The group sponsor, the member of rightmost

leaf node of the tree, is responsible for

computing all the keys of the tree and

broadcasting all the bkeys of the tree to the

members. In order to establish the key

agreement, at first, the group sponsor

obtains the session random key from .

After computing the keys and the bkeys,

the group sponsor broadcasts the bkeys.

1256 동 피어 그룹을 한 삼진 트리방식의 인증된 그룹 키 합의 로토콜

[Fig. 1] An Example of a Key Tree (h=2, n=6)

Using the bkeys, computes every key

along the path from <l, v> to <0, 0>, referred

to as the key-path.

[Fig. 1] shows an example of a key tree.

In [Fig. 1], for example, the bold lines

mean the key-path of , and denote

 and

 . , the member of right-

most leaf node of the tree, becomes a group

sponsor. obtains ≤≤ from each

member and then computes all values of

the tree as follows:

 , ,
 , ,
 , ,
 , ,
 , ,
 , ,

,

,

 , .

And then broadcasts all the bkeys of the

tree to members. Using the bkeys of the

tree, finally, ≤≤ computes every

key along his key-path. For example, the

group session key computed respectively by

, and are

,

 ,

Lee et al.'s protocol has several operating

flaws.

First, it is dangerous the group sponsor

to know session random keys {} of all

members. In the worst case, when the

group sponsor leaves a group, all nodes of

the tree should be changed completely.

Thus, the next group sponsor should obtain

new session random keys {} from all

members to generate the new key tree and

all members should also compute all the

keys. Second, in a distributed network, it is

not suitable for a group sponsor to be solely

responsible of computing all key values and

broadcasting them. It requires the group

sponsor to have heavy loads and high trust

value. Finally, Lee et al.'s protocol does not

have authentication process of any kind.

IV. Our Protocol

Any member of a group can be a group

sponsor in DPG and a group sponsor can

leave a group freely. So, it is not desirable

that a group sponsor learns the session

random keys {} of all members. We modify

Lee et al.'s protocol so that the group

sponsor can not learn {}. In addition, our

protocol performs an implicit authentication

process and distributes the loads among the

members.

4.1 System Setup

The Private Key Generator (PKG)

chooses the following system parameters:

 .

1. Select an elliptic curve defined over

 with order and a base point , then

make them public.

2. Choose a master key ∈ and compute

 by .

情報保護學 論文誌 (2012. 12) 1257

3. Publish system parameters.

4. Each member of group submits his

identity to PKG. His public key is

 .

PKG computes his private key .

5. Finally, PKG sends to each member

of group via a secure channel.

By the above step, PKG generates the

private keys of group members.

4.2 Member Authentication

Any of group members can become a

group sponsor. To be a group sponsor is not

related with the location of the node. But,

for the sake of further distributed network,

it is desirable that the member has the

lowest computational cost in obtaining the

group session key becomes a group sponsor.

If a group sponsor is decided, he performs

an implicit authentication process. The

member coming into the group chooses a

session random number ∈ and computes

 and .

 broadcasts {,} to the group. The

group sponsor verifies

 .

If the equation holds[11-13], then the

group sponsor believes the message was

sent from member .

The group sponsor collects {} from

qualified members and then broadcasts

them with the information concerning the

location of members in key tree. Every

group member can keep watch on the action

of the group sponsor by checking on {}.

Note that unlike Lee et al.' protocol, the

group sponsor doesn't know {} of all

members.

4.3 Key Generation

There are several subgroups in key

tree(if n > 3). Anyone of a subgroup can

become a subgroup sponsor. The subgroup

sponsor computes the bkey of each subgroup

using published {}. And then broadcasts

the value to different subgroup members.

Thus, the sibling member of the subgroup

sponsor can check on the value.

In [Fig.1], assume as the group

sponsor and , and as the subgroup

sponsors. After the authentication process

of (1≤i≤6), broadcasts {}.

(i.e.{

 })

 computes the bkey of the subgroup

 and then

broadcasts it. and can check on it.

 computes the bkey of the subgroup

 and then broad-

casts it. can check on it.

 does not need to broadcast the bkey of

the subgroup, because has been already

published.

Using the bkeys of the tree, finally,

computes every key along his key-path and

obtains .

As a result, each group member has the

group session key of the same type with

Lee et al.'s protocol.

V. Group Membership Operations

5.1 Join Protocol

The joining process is described as follows:

1. We assume the group has n members.

The new member broadcasts the join

request including , and . Upon

receiving the join request, the group

1258 동 피어 그룹을 한 삼진 트리방식의 인증된 그룹 키 합의 로토콜

[Fig. 2] Tree-updating in Join Operation

[Fig. 3] Tree-updating in Leave Operation

sponsor performs the authentication pro-

cess. If is qualified, the group sponsor

generates the leaf node nearest the root

node for . The height of the tree should

not be increased as possible.

2. The group sponsor broadcasts {}(1 ≤

i ≤ n+1) and the location information of

the new member.

3. The subgroup sponsors compute the

subgroup bkeys and broadcast them.

4. Upon receiving {} and the subgroup

bkeys, each group member computes every

key along his key-path and then obtains

the new group session key.

[Fig. 2] illustrates an example of member

 joining a group where is the group

sponsor and , and are the subgroup

sponsors. broadcasts the join request

including to the group.

performs the authentication process. If

is qualified, renames to

and generates . And then,

broadcasts the bkeys {} (1 ≤ i ≤ 8) of all

leaf nodes. The subgroup sponsors ,

and broadcast , and

 , respectively. Each group member

computes .

5.2 Leave Protocol

When a member wants to leave a group,

the group session key has to be renewed to

prevent the leaving member from acquiring

any information about future communication.

The property of forward security has to

be assured. The leaving process is described

as follows:

1. We assume that the group has n

members and the member wants to leave

the group. The leaving member broad-

casts the leave request. After receiving the

leave request, the group members delete

the leaf node of . Then, the relevant

parent node with only one child node

should be also deleted.

2. The subgroup sponsor related to

computes the updated subgroup bkeys and

broadcasts them.

Note that unlike Lee et al.' protocol, the

group sponsor doesn't need to broadcast all

bkeys again.

3. Upon receiving the updated subgroup

bkeys, each group member computes every

key along his key-path and then obtains

the new group session key.

[Fig. 3] illustrates an example of member

 leaving the group where is the group

sponsor and , and are the subgroup

情報保護學 論文誌 (2012. 12) 1259

[Fig. 4] Tree-updating in Merge Operation

sponsors. broadcasts the leave request

to the group. Every member deletes the leaf

node <2, 3>. updates to

using . And then

broadcasts it. Each group member computes

 .

In Lee et al.'s protocol, when the group

sponsor knowing of all members leaves a

group, the new group sponsor receives new

{} from remaining members and computes

all bkeys of updated key tree and broad-

casts them. But, in our protocol, {} from

remaining members can be reused and the

only subgroup sponsor related to the

previous group sponsor computes the new

subgroup bkeys and broadcasts them.

5.3 Merge Protocol

We now describe the merge protocol for

two groups.

1. We assume that it is natural to merge

the smaller group onto the larger one. The

smaller group sponsor broadcasts the merge

request including { } of own group

members and tree structure to the larger

group. Upon receiving the request, the

larger group sponsor checks if the

following equation holds[11-13]:

If all members are qualified, the larger

group sponsor generates the leaf nodes.

2. The group sponsor broadcasts {} of

all members of two group including the

information of the new tree structure.

3. The subgroup sponsors of updated

subtree compute the new subgroup bkeys

and broadcast them.

4. Upon receiving {} of all members and

the subgroup bkeys, each group member

computes every key along his key-path and

then obtains the new group session key.

As a result, merge protocol is similar to

join protocol. To reduce the height of the

tree, the tree structure of the smaller group

may not be kept.

[Fig. 4] shows an example of merging two

groups, where the group sponsors are

and . broadcasts the merge request

including {}(6≤i≤9) and tree structure

to the larger group. Then, performs the

authentication process as follows:

If the equation holds, generates the

leaf nodes. To reduce the height of the tree,

the smaller group members are divided into

two different subgroups. renames

and to and . And

then, generates the leaf nodes for , ,

 and and broadcasts the bkeys {} (1

≤ i ≤9) of all leaf nodes. The subgroup

sponsors and compute new

 and

and broadcast them, respectively. Each

group member computes .

1260 동 피어 그룹을 한 삼진 트리방식의 인증된 그룹 키 합의 로토콜

[Fig. 5] Tree-updating in Partition Operation

5.4 Partition Protocol

We now describe the partition protocol.

1. The leaving members broadcast the

leave requests. After receiving the leave

requests, the group members delete the leaf

nodes of leaving members.

2. The subgroup sponsors related to

leaving members compute the new subgroup

bkeys and broadcast them. Note that the

group sponsor doesn't need to broadcast all

bkeys again.

3. Upon receiving the updated subgroup

bkeys, each group member computes every

key along his key-path and then obtains

the new group session key.

This event appears as a simultaneous

leaving of multiple members. As a result,

partition protocol is similar to leave

protocol. Like merge protocol, the height of

the tree should be reduced as possible.

[Fig. 5] shows an example of partitioning

the group where is the group sponsor.

After , , and broadcast the

leave requests and leave the group, all

remaining members delete all nodes of

leaving members and the node <2, 0>. To

reduce the height of the tree, moves to

other subgroup and the node <1, 2> is deleted.

Remaining members rename , ,

 , and to ,

 , , and . The

subgroup sponsor computes and

broadcasts it. Each group member computes

 .

VI. Discussion

6.1 Security

The proposed key agreement protocol

with authentication satisfies the following

security properties:

Group key secrecy: means that even an

adversary who knows all bkeys can not

derive the group key. If an adversary

doesn't know the session random key of

current member, he can not compute the

group key with only all bkeys in our

protocol. To extract from the given is

computationally impossible. It is equivalent

to solve the Elliptic Curve Discrete

Logarithm Problem.

Known-group key secrecy: means that

knowledge of previous group keys will not

enable an adversary to know other group

keys. If the session is changed after

membership operation, bkeys and group key

are also changed. If an adversary doesn't

know of current member, he can't compute

current group key. The knowledge of previous

group keys cannot deduce the future group

keys in our protocol.

No key-compromise impersonation: If

the long term private key of a member is

compromised, the adversary can impersonate

the member in this protocol. But he cannot

impersonate other members.

No unknown key-share: If an adversary

convinces a group of members that they

share a key with another member, while in

fact they share the key with the adversary,

we call the protocol suffering from unknown

key share attack. The group sponsor can

情報保護學 論文誌 (2012. 12) 1261

[Table 2] Communication and Computation Costs

Communication Computation

Rounds Pairings Multiplications

Lee et al.'s

protocol

Join 2 ⌈⌉ ⌈⌉
Leave 1 ⌈⌉ ⌈⌉

Our protocol
Join 3 ⌈⌉ ⌈⌉

Leave 1 ⌈⌉ ⌈⌉

a. When the member not a group sponsor joins and leaves a group

Communication Computation

Rounds Massages Pairings Multiplications

Lee et al.'s

protocol
2 n+1 ⌈⌉

Our protocol 1 1 ⌈⌉ ⌈⌉

b. When the group sponsor leaves a group

accept {} from only members to have the

long term private key by member authenti-

cation process. Though an adversary who

doesn't have generates the session random

key , the group sponsor can not accept

 and can not be published. Our proto-

col can withstand the man-in-the-middle

attacks.

No Key control: It is not possible for

any of the entities or the adversary to force

the group key to be a pre-selected value or

predict the value of the group key. All

members in the group negotiate collabo-

ratively the group key and neither member

can control the outcome of the negotiation.

No one can force the group key to a preselected

value.

Backward and forward secrecy: Backward

secrecy means that a new member who

knows the current group key cannot derive

any previous group key. A new member

picks session random key and broadcasts

. Once he receives all bkeys on his

key-path, he can compute current group

key. Cleary, all these keys will contain a

new joiner's contribution . Hence, they

are independent of previous group keys.

Therefore, he can't derive any previous

group keys.

The group key that the leaving member

knows must be renewed to provide forward

secrecy. When a member leaves a group, all

bkeys that contain his session random key

 are deleted from key-tree and current

group key is also changed. Thus, he

knowing previous group key cannot derive

current group key. There are the properties

of backward and forward secrecy in our

protocol.

6.2 Complexity

While TGDH uses a binary tree, Lee et

al.'s protocol uses a ternary tree. Using a

ternary tree can reduce the computation

cost to . Since we modify Lee

et al.'s protocol, our protocol has the group

session key of the same type with Lee et

al.'s.

[Table 2] summarizes the communication

and computation costs of Lee et al.'s and

our protocol except the system setup and

the authentication process. The number of

remaining group members after membership

1262 동 피어 그룹을 한 삼진 트리방식의 인증된 그룹 키 합의 로토콜

operation are denoted by n. The load of

protocol depends on the height of tree, the

balance of the key-tree and the location of

the joining and the leaving nodes. In our

analysis, we assume the configuration that

the levels are full of nodes in the key tree

with the height h and list the total cost of

the group for Lee et al.'s protocol and our

protocol.

When the member not a group sponsor

joins and leaves a group, the computation

cost of our protocol is equal to that of Lee

et al.'s, while the communication cost of

our protocol is a little more expensive than

that of Lee et al.'s. The reason is that our

protocol has a group sponsor broadcasting

bkeys of leaf nodes and several subgroup

sponsors broadcasting bkeys of internal

nodes, while Lee et al.'s protocol has only

one group sponsor broadcasting all bkeys.

On the one hand, when the group sponsor

leaves a group, the next group sponsor of

Lee et al.'s should obtain the new session

random keys from remaining members to

update all nodes of the tree. However, in

this case, the next group sponsor of our

protocol doesn't need to. The reason is that

unlike Lee et al.'s, the previous group

sponsor of our protocol does not know the

session random keys {} of remaining

members except his session random key. He

knows only {} of members. Thus, The

only subtree related to the group sponsor is

changed and {} of remaining members

can be reused. The only subgroup sponsor

related to the previous group sponsor

broadcasts bkeys of the updated subtree.

Therefore, communication and computation

costs of the key renewing can be reduced

significantly in this event.

VII. Conclusion

This paper modified Lee et al.'s protocol

for distributive, secure and efficient

networks. Our protocol distributes the

loads among the members and performs an

implicit authentication function and has

the group sponsor unknowing the session

random keys of members. When the group

sponsor leaves a group, the communication

and computation costs of the key renewing

can be reduced significantly while preserving

the security properties. Therefore, our proto-

col is suitable to Dynamic Peer Groups.

References

[1] A. Shamir, “Identity-based cryptosys-

tems and signature schemes,” Advances

in Cryptology-Crypto LNCS 196 pp. 47-53,

1984

[2] A. Joux, “A one round protocol for

tripartite Diffie-Hellman,” Proc. Algori-

thmic Number Theory Symposium-ANTS

IV LNCS 1838 pp. 385-394, 2000

[3] W. Diffie and M. E. Hellman, “New

directions in cryptography,” IEEE Trans.

Inf. Theory 22 pp. 644-654, 1976

[4] Y. Kim, A. Perrig, and G. Tsudik, “Simple

and fault-tolerant key agreement for

dynamic collaborative groups,” Proc. 7th

ACM Conference on Computer and

Communications Security pp. 235-244,

2000

[5] C. K. Wong, M. Gouda, and S. S. Lam,

“Secure group communication using key

graphs,” IEEE/ACM Trans. Net. 8 pp.

16-29, 2000

[6] Y. Kim, A. Perrig, and G. Tsudik, “Com-

munication-efficient group key agreement,”

Proc. IFIP SEC pp. 229- 244, 2001

[7] S. Lee, Y. Kim, K. Kim, and D.-H. Ryu,

"An efficient tree-based group key

agreement using bilinear map," Applied

<著 紹介>

김 호 희 (Ho-hee Kim) 학생회원

1993년 2월: 경북 학교 자공학과 졸업

1996년 2월: 경북 학교 자공학과 석사

2003년 3월～ 재: 경북 학교 자공학과 박사과정

< 심분야> 정보보호, 자공학

사 진

김 순 자 (Soon-ja Kim) 종신회원

1975년 2월: 경북 학교 수학교육과 졸업

1977년 2월: 경북 학교 수학교육과 석사

1988년 2월: 계명 학교 이학박사

1980년～ 재: 경북 학교 자공학부 교수

< 심분야> 정보보호 응용기술, 자상거래 보안

情報保護學 論文誌 (2012. 12) 1263

Cryptography and Network Security 2846

pp.357-371, 2003

[8] R. Dutta, R. Barua, and P. Sarkar, “Provably

secure authenticated tree based group

key agreement,” ICICS LNCS 3269 pp.

92-104, 2004

[9] R. Dutta and R. Barua, “Dynamic group

key agreement in tree-based setting,”

Proc. ACISP LNCS 3574 pp. 101-112, 2005

[10] S. Wu, J. Chiu, and B. Chieu,

“Identity-based key agreement for peer

group communication from pairings,”

IEICE Trans. fundamentals E88-A, 2005

[11] K. Choi, J. Hwang, and D. Lee, “Efficient

ID-based group key agreement with

bilinear maps,” International Workshop

on Practice and Theory in Public Key

Crpytography LNCS 2947 pp. 130-144,

2004

[12] X. Du, Yi. Wang, J. Ge, and Yu. Wang,

“ID-based authenticated two round

multi-party key agreement,” IACR eprint

2003-247, 2003

[13] X. Du, Yi. Wang, J. Ge, and Yu. Wang,

“An improved ID-based authenticated

group key agreement scheme”, IACR

eprint 2003-260, 2003

[14] R. C-W. Phan and B-M. Goi, "(In)Security

of efficient Tree-based group key

agreement using Bilinear Map",

IEEE/IFIP International Conference on

Embeded and Ubiquitous Computing,

EUC'08 pp. 443-446, 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [1734.803 2245.040]
>> setpagedevice

