DOI QR코드

DOI QR Code

Facile Synthesis of Porous TiO2 Nanopearl and Nanorice toward Visible-Light Photocatalysts

  • Lee, Jooran (Molecular/Nano Photochemistry & Photonics Lab, Department of Chemistry, Chungnam National University) ;
  • Bae, Eunju (Molecular/Nano Photochemistry & Photonics Lab, Department of Chemistry, Chungnam National University) ;
  • Yoon, Minjoong (Molecular/Nano Photochemistry & Photonics Lab, Department of Chemistry, Chungnam National University)
  • Received : 2012.01.30
  • Accepted : 2012.02.21
  • Published : 2012.03.01

Abstract

New porous $TiO_2$ nanostructures with shapes of pearl and rice were synthesized by hydrothermal treatment of $TiO_2$-liposome nanocomposites in acid and base solutions, respectively, as identified by scanning electron microscopy (SEM), transmission electron microscopy (TEM) images and large Brunauer-Emmett-Teller (BET) surface areas. The x-ray diffraction (XRD) patterns and selected area electron diffraction proved them to be well-defined anatase crystals. Their UV-visible reflectance absorption spectra were observed to have low band gap energy (3.03 and 3.07 eV, respectively), exhibiting surface absorption band in the visible range from 400 to 600 nm. The degradation of methylene blue (MB) over the $TiO_2$ nanostructures was observed upon visible-light irradiation, which was found to be very efficient as compared with any other conventional visible-light responsive $TiO_2$ nanostructures.

Keywords

References

  1. FundamentalsandApplication, BKC,Inc,Tokyo,1999
  2. Fujishima, A. and Hashimoto, K. Nature,1972,238, 37-39. https://doi.org/10.1038/238037a0
  3. Zhang, H.; Wang, G. ; Chen, D.; Lv, X.; Li, J. Chem.Mater.,2008,20,6543-6549. https://doi.org/10.1021/cm801796q
  4. Robel, I.;Subramanian,V.;Kuno,M.;Kanat,P.J.Am.Chem. Soc., 2006,128, 2385-2393. https://doi.org/10.1021/ja056494n
  5. Fox, M. A.; Dulay, M. T. Chem.Rev.,1993,93, 341-357. https://doi.org/10.1021/cr00017a016
  6. Linsebigler, A. L.; Lu, G.; Yates, Jr, J. T. Chem.Rev.,1995,95, 735-758. https://doi.org/10.1021/cr00035a013
  7. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, W. Chem. Rev., 1995,95,69-96. https://doi.org/10.1021/cr00033a004
  8. O'Regan, B.; Grotzel, M. Nature,1991,353, 737-740. https://doi.org/10.1038/353737a0
  9. Hagfeldtt, A.; Grotzel, M. Chem.Rev.,1995,95,49-68. https://doi.org/10.1021/cr00033a003
  10. Polo, A. S.; Itokazu, M. K.; Murakami Iha, N. Y. Coord.Chem. Rev., 2004,248,1343-1361. https://doi.org/10.1016/j.ccr.2004.04.013
  11. Yamashita, H.; Harada, M. J.PhotochemistryandPhotobiology., A, 2002, 148, 257-261. https://doi.org/10.1016/S1010-6030(02)00051-5
  12. Zou, Z.; Sayama, J. Ye, K.; Arakawa, H. Nature, 2001,414,625-627. https://doi.org/10.1038/414625a
  13. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science, 2001,293,269-271;
  14. Khan, S. U. M.; Al-Shahry Jr., M.; Ingler, W. B. Science, 2002, 297, 2243-2245 https://doi.org/10.1126/science.1075035
  15. Sakthivel, S.; Kisch, H. Angew.Chem.,Int.Ed.,2003,42,49080-4911.
  16. Domen, K. J.Am.Chem.Soc.,2002,124,13547-13553. https://doi.org/10.1021/ja0269643
  17. de Lucas, M. C.; Sibillot, P. ; Bourgeois, S.; Sacilotti,M. Surf. Coat.Technol.,2000,125,396-399. https://doi.org/10.1016/S0257-8972(99)00588-5
  18. Yoon, M. ; Seo, M.; Jeong, C. ; Jang, J. H.; Jeon, K. S. Chem. Mater., 2005,17,6069-6079. https://doi.org/10.1021/cm0515855