References
- A. Berman and R. J. Plemmoms, Nonnegative Matrices in The Mathematical Sciences, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.
- D. J. Evans, M. M. Martins, and M. E. Trigo, The AOR iterative method for new preconditioned linear systems, J. Comput. Appl. Math. 132 (2001), no. 2, 461-466. https://doi.org/10.1016/S0377-0427(00)00447-7
- A. Gunawardena, S. Jain, and L. Snyder, Modified iterative methods for consistent linear systems, Linear Algebra Appl. 154/156 (1991), 123-143. https://doi.org/10.1016/0024-3795(91)90376-8
- T. Kohno, H. Kotakemori, H. Niki, and M. Usui, Improving the modified Gauss-Seidel method for Z-matrices, Linear Algebra Appl. 267 (1997), 113-123. https://doi.org/10.1016/S0024-3795(97)80045-6
- W. Li, Comparison results for solving preconditioned linear systems, J. Comput. Appl. Math. 176 (2005), no. 2, 319-329. https://doi.org/10.1016/j.cam.2004.07.022
- W. Li, A note on the preconditioned Gauss-Seidel (GS) method for linear systems, J. Comput. Appl. Math. 182 (2005), no. 1, 81-90. https://doi.org/10.1016/j.cam.2004.11.041
- M. Neumann and R. J. Plemmons, Convergence of parallel multisplitting iterative methods for M-matrices, Linear Algebra Appl. 88/89 (1987), 559-573. https://doi.org/10.1016/0024-3795(87)90125-X
- H. Niki, K. Harada, M. Morimoto, and M. Sakakihara, The survey of preconditioners used for accelerating the rate of convergence in the Gauss-Seidel method, J. Comput. Appl. Math. 164/165 (2004), 587-600. https://doi.org/10.1016/j.cam.2003.11.012
- L. Sun, A comparison theorem for the SOR iterative method, J. Comput. Appl. Math. 181 (2005), no. 2, 336-341. https://doi.org/10.1016/j.cam.2004.12.007
- R. S. Varga, Matrix Iterative Analysis, Springer, Berlin, 2000.
- J. H. Yun, A note on the improving modified Gauss-Seidel (IMGS) method, Appl. Math. Comput. 184 (2007), no. 2, 674-679. https://doi.org/10.1016/j.amc.2006.06.067
- J. H. Yun, A note on preconditioned AOR method for L-matrices, J. Comput. Appl. Math. 220 (2008), no. 1-2, 13-16. https://doi.org/10.1016/j.cam.2007.07.009
Cited by
- ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE OF MATRICES vol.28, pp.2, 2013, https://doi.org/10.4134/CKMS.2013.28.2.407
- Comparison theorems of preconditioned Gauss–Seidel methods for M-matrices vol.219, pp.4, 2012, https://doi.org/10.1016/j.amc.2012.08.037