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THE LINEAR 2-ARBORICITY OF PLANAR GRAPHS
WITHOUT ADJACENT SHORT CYCLES

HoNG-YU CHEN, XIANG TAN, AND JIAN-LIANG WU

ABSTRACT. Let G be a planar graph with maximum degree A. The
linear 2-arboricity las(G) of G is the least integer k such that G can be
partitioned into k edge-disjoint forests, whose component trees are paths
of length at most 2. In this paper, we prove that (1) la2(G) < [%] + 8 if
G has no adjacent 3-cycles; (2) laz(G) < f%] + 10 if G has no adjacent
4-cycles; (3) laz2(G) < [%] + 6 if any 3-cycle is not adjacent to a 4-cycle
of G.

1. Introduction

In this paper, all graphs are finite, simple and undirected. For a real number
x, [x] is the least integer not less than x and |z ] is the largest integer not larger
than z. Let G be a graph. We use V(G) and E(G) to denote the vertex set and
the edge set, respectively. If uv € E(G), then u is said to be the neighbor of v,
and N (v) is the set of neighbors of v. The degree of a vertex v d(v) = |N(v)],
§(G) is the minimum degree and A(G) is the maximum degree of G. A k-, k*-
or k- vertex is a vertex of degree k, at least k, or at most k, respectively. A
k- cycle is a cycle of length k. Two cycles are said to be adjacent if they are
incident with a common edge. For s > 2, an even cycle C = vyvg - - - V9407 is
called a 2-alternating cycle if d(v1) = d(v3) = -+ = d(vas—1) = 2.

An edge-partition of a graph G is a decomposition of G into subgraphs
G1,Ga,...,Gp, such that E(G) = E(G1) UE(G2)U---UE(G,,) and E(G;) N
E(Gj) = 0 for i # j. A linear k-forest is a graph in which each component
is a path of length at most k. The linear k-arboricity lai(G) of a graph G is
the least integer m such that G can be edge-partitioned into m linear k-forests.
Clearly, lax(G) > lag+1(G) for any k > 1. For extremities, la; (G) is the edge
chromatic number x (G) of G; las (G) representing the case when component
paths have unlimited lengths is the ordinary linear arboricity la(G) of G.
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The linear k-arboricity of a graph was first introduced by Habib and Péroche
[7]. They posed the following conjecture.

Conjecture A. For a graph G of order n and a positive integer i,

' [(An+1)/2| 75T A#n—1,
lai(@) < { [(An)/2L 22 Tif A =n—1,

The linear k-arboricity of cycles, trees, complete graphs and complete bipar-
tite graphs has been determined in [5], [6]. Thomassen [12] proved that la; < 2
for a cubic graph G, where k > 5, and this result is best possible. Chang [3] and
Chang et al. [4] investigated the algorithmic aspects of the linear k-arboricity.
It was further studied by Bermond et al. [2], Jackson and Wormald [8], and
Aldred and Wormald [1]. Lih, Tong and Wang [9] proved that for a planar
graph G, las(G) < [£FL] + 12; Moreover, las(G) < [242] + 6 if G does not
contain 3-cycles. Qian and Wang [11] proved that for a planar graph G without
4-cycles, laz(G) < [2F1] + 3. Ma, Wu and Yu [10] proved that for a planar
graph G without 5- or 6-cycles, las(G) < f%} + 6. For a planar graph G,
we will prove that (1) laz(G) < f%} + 8 if G has no adjacent 3-cycles; (2)
las(G) < [£7 + 10 if G has no adjacent 4-cycles; (3) laa(G) < [5] + 6 if any
3-cycle is not adjacent to a 4-cycle of G.

2. Main results and their proofs

In the section, we always assume that a planar graph G has always been
embedded in the plane. Let G be a planar graph and F(G) be the face set of
G. For f € F(G), the degree of f, denoted by d(f), is the number of edges
incident with it, where each cut-edge is counted twice. A k-, k™- or k~- face is
a face of degree k, at least k, or at most k, respectively. Let n;(v) denote the
number of i-vertices of G adjacent to the vertex v, ¢;(v) the number of i-faces
of G incident with v. A k-face with consecutive vertices vy, vs, ..., v along its
boundary in some direction is often said to be (d(v1), d(v2), ..., d(vy))-face.

Lemma 1. Let G be a connected planar graph with 6(G) > 2. If G has no
adjacent 3-cycles, then G contains an edge xy such that d(x) + d(y) < 11, or
G contains a 2-alternating cycle.

Proof. Suppose, to the contrary, that G is such a connected planar graph not
satisfying the lemma. Then we have

(a) For any vertex v, q3(v) < L@J;

(b) For any vertex v, na(v) + n3(v) + q3(v) < d(v);

(¢) Let G be the subgraph induced by the edges incident with the 2-vertices
of GG, then (s is a forest and there exists a matching M such that all 2-vertices

in Gy are saturated.

(a) is obvious. For (b), suppose f is a 3-face incident with v. Since d(x) +
d(y) > 12 for any edge xy € E(G), f is incident with at most one 5~ -vertex.
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So v is adjacent to at least g3(v) 6T-vertices. Hence, d(v) — na(v) — n3(v) >
d(v) = 37 ni(v) = g3(v).

For (c), since d(z) + d(y) > 12 for every edge zy € E(G), every pair of
2-vertices is nonadjacent. Hence, G2 does not contain any odd cycle. Since G
does not contain any 2-alternating cycle, G5 does not contain any even cycle.
So every component of G is a tree and there exists a matching M such that
all 2-vertices in G5 are saturated.

If wv € M and d(u) = 2, we call v the 2-master of u.

By Euler’s formula |V| — |E| 4+ |F| = 2, we have

(1) > (dv) =4)+ Y (d(f) —4) = —4(|V| = |E| +|F|) = -8 < 0.

veV feF

We define ch to be the initial charge. Let ch(z) = d(x) — 4 for each x €
V(G)UF(G). In the following, we will reassign a new charge denoted by ch,(x)
to each z € V(G) U F(G) according to the discharging rules. Since our rules
only move charges around, and do not affect the sum, we have

(2) Yoooeh@) = > chlx)=-8.

2EV(G)UF(G) €V (G)UF(G)

In the following, we will show that c¢h’(z) > 0 for each z € V(G) U F(G), a
contradiction to (2), completing the proof.

The discharging rules are defined as follows.

R1-1. Each 2-vertex receives 2 from its 2-master.

R1-2. Each 3-vertex receives % from each of its neighbors.
R1-3. If a 3-face f is incident with a 47 -vertex, then f receives % from
each of another two incident vertices; Otherwise, f receives % from each of its

incident vertices.

Let f be a face of G. If d(f) > 4, then ¢h'(f) = ch(f) > 0. If d(f) = 3,
then it is incident with at most one 4~ -vertex. It follows that ch’ (f) > ch(f)+
min{2 x §,3 x £} =0 by R1-3.

Let v be a vertex of G. If d(v) = 2, then ¢k (v) = ch(v) + 2 = 0 by R1-1.
If d(v) = 3, then ch'(v) = ch(v) +3 x 1 = 0 by R1-2. If d(v) = 4, then
ch'(v) = ch(v) = d(v) —4 = 0. If 5 < d(v) < 8, then gz(v) < 42| by
(a), it follows that ch'(v) > ch(v) — 2g3(v) > 0 by R1-3. If d(v) = 9, then
gs(v) < 4 by (a), and nz(v) < d(v) — g3(v) by (b). It follows that ch (v) >
ch(v)—3g3(v) — 3n3(v) > 0 by R1-2 and R1-3. If d(v) > 10, then g3(v) < \_d(;)J
by (a), and ns(v) < d(v) — g3(v) — nz(v) by (b). It follows that ch' (v) >
ch(v) —max{2+ 343(v) + 3(d(v) — g3(v) = n2(v)), 3a3(v) + 3(d(v) —gs(v))} >
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max{2 + 3q3(v) + 3(d(v) — g3(v) — 1), 3¢3(v) + +(d(v) — q3(v))} = 0 by R1-1,
R1-2 and R1-3.
Hence we complete the proof of the lemma. O

Lemma 2. Fvery planar graph G without adjacent 3-cycles has an edge-parti-
tion into two forests T, To and a subgraph H such that for every v € V(G),

dr, (v) < [97, dr, (v) <[99 and dp (v) < 6.

Proof. The proof of the lemma is by induction on the number |V (G)|+ |E(G)|.
For a planar graph G with |V(G)| + |E(G)| < 5, the lemma holds obviously.
For a planar graph G with |V(G)| + |E(G)| > 6, if A(G) <6, then let H =G
and Ty = Ty = (), the result holds.

Suppose that A(G) > 7. We may assume that G is a connected planar
graph. By the induction, if G isa proper subgraph of GG, the lemma is true for
the graph G’, that is, G has an edge-partition into two forests Tl/, TQI and a
subgraph H' such that for every v € V(G'), dg (v) < 6 and dyr (v) < fdG;(v)]
for i = 1,2. We will choose an appropriate subgraph G’ to extend Tl/ U TQ/ UH'
to an edge-partition 77 UT5 U H of G satisfying the lemma.

We now consider two cases according to the minimum degree of G.

Case 1. 6(G) = 1. Let uwv € E(G) and dg(u) = 1. Define the graph
G =G —u.

If dpr(v) <5, thenlet H=H +wv and T; = T; for i = 1,2. It is easy to
see that the result holds.

If dpy(v) = 6, suppose that dy (v) < dy (v). Since dgr (v) = ds (v) +
d 2( v) + dy (v) = dTl/(v) + dTQ/(v) + 6 and d(v) = dg(v) — 1, we have

7o () < 9T Tet Ty = Ty +uv, Ty = Ty and H = H'. Thus dr,(z) =
( ) and dH( ) = dy(z) for all z € V(G'). Moreover, dp, (u) = 1 =
[dG<“>1 dr, (v) = 1+ dg (v) < 1+ 29=T <[990 and dp, (z) = dy () for
all © € V(G)\{u,v}.

Case 2. §(G) > 2. By Lemma 1, we only need to consider two subcases.

Subcase 1. G contains an edge zy € E(G) such that dg(z) + da(y) < 11.

Define the graph G' = G —xy and assume that d- () < dp (y). I dgy (y) <
5, let H = H + zy, Ty = Tll and Ty = TQI, then the lemma holds obviously.

Suppose that dy/(y) = 6. Then 1 < dv(x) < 3 and g (y) + dy (y) +
de () < 3. We may assume ds () < dys (x).

If dy (z) = 3, then y & V(T}) and y & V(Ty). Let Ty = T, + xy, To = Ty
and H = H'. 1f dgy(z) = 2, then z € V() and = € V(Ty) since dy () <
f /($)] for i = 1,2. Also note that y ¢ V(Tl) ory & V(TQ) Assume that
y & V(T)). Againlet Ty = T, + xy, To = T, and H = H . We see that T}
is a forest and dp, (z) =2 = [3] = fdGT(T)] If dey (z) = 1, then = & V(T7).
Let T7 = Tll +ay, Tr = TQ/ and H = H'. We see that T, is a forest and




THE LINEAR 2-ARBORICITY OF PLANAR GRAPHS 149

dr,(z) =1 = [dc(w 1. Furthermore, dr,(y) = dp(y) +1 <3 < [dGT(y)], the
result holds. '

Subcase 2. G contains a 2-alternating cycle C' = v1vy - - - v25v1, § > 2, such
that dG(’Ul) = dG(’Ug) /: e = dG(’Ugsfl) = 2 ,

Define the graph G = G — E(C). Let T} = T + {v1v2, V304, ..., V251025 },
T, = TQI + {vovs, v4us, ..., 9501} and H = H'. Note that both T} and T
are forests. Since dg(z) = d (x) + 2 for vertices z of the cycle C, we see
that dr, (vj) = de(vj) =1= dG(v’ for j = 1,3,...,25 — 1, and dr,(v;) =
dT(Uj)+1<fG 1—&—1 f%] forz:1,2&ndj:2,4,...,23,the
lemma holds. [l

The following is a direct consequence of Lemma 2.

Corollary 3. Every planar graph G without adjacent 3-cycles can be edge-
partitioned into two forests Ty, T and a subgraph H such that A(Ty) < fMl ,

A(Ty) < [ and A(H) <6 i

Lemma 4. If a graph G can be edge-partitioned into m subgraphs G1,G2, .. .,
G, then lag(G) < D7 las(Gy).

The above lemma is obvious since we just need to use disjoint color sets on
the G;’s.

A
Lemma 5 ([5]). For a forest T, we have las(T) < f%}
Lemma 6 ([2]). For a graph G, we have laz(G) < A(G).
Now we are ready to prove our first main result.

Theorem 7. If G is a planar graph without adjacent 3-cycles, then las(G) <
(26907 + 8.

Proof. By Corollary 3, G has an edge-partition into two forests 77, To and
a subgraph H such that A(T}) < f#}, A(Ty) < f@} and A(H) < 6.
Combining Lemmas 4, 5, 6, we obtain the following sequence of inequalities.

ZGQ(G) S ZCLQ(Tl) + lCLQ(TQ) + ZQQ(H)

- (A(T12)+1W N [A(Tzz)-l—l] A
A(G)

<2([ z 2W+1]+6

S((@}H)Hﬁ
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Lemma 8. Let G be a connected planar graph with 6(G) > 2. If G has no
adjacent 4-cycles, then G contains an edge xy such that d(z) + d(y) < 13, or
G contains a 2-alternating cycle.

Proof. Suppose, to the contrary, that G is such a connected planar graph not

satisfying the lemma. Then we have

(a) For any vertex v, q3(v) < LQdév)J;

(b) For any vertex v, na(v) + ng(v) + quT(v)W < d(v);

(¢) Let G be the subgraph induced by the edges incident with the 2-vertices
of G, then G is a forest and there exists a matching M such that all 2-vertices
in (G5 are saturated.

(a) is obvious. For (b), suppose f is a 3-face incident with v. Since d(x) +
d(y) > 14 for any edge xy € E(G), f is incident with at most one 6~ -vertex.

So v is adjacent to at least fqg’T(U)} T*-vertices. Hence, d(v) — na(v) — n3(v) >
A(w) = 320 mi(v) = [%52].

For (c), it is similar to that of Lemma 1(c).

If wv € M and d(u) = 2, we call v the 2-master of u.

By Euler’s formula |V| — |E| + |F| = 2, we have
(3) D () =4+ Y (d(f) —4) = —4(V|~|B| + |F]) = -8 < 0.

veV feF
We define ch to be the initial charge. Let ch(v) = d(v)—4 for each v € V(QG)
and ch(f) = d(f) — 4 for each f € F(G). In the following, we will reassign
a new charge denoted by ¢h'(z) to each # € V(G) U F(G) according to the

discharging rules. Since our rules only move charges around, and do not affect
the sum, we have

(4) Yoooeh@) = > chlx)=-8.

2EV(G)UF(G) TEV(G)UF(G)

In the following, we will show that ¢k’ (z) > 0 for each z € V(G) U F(G), a
contradiction to (4), completing the proof.

Now, let us introduce the needed discharging rules as follows:

R2-1. Each 2-vertex receives 2 from its 2-master.

R2-2. Each 3-vertex receives % from each of its neighbors.

R2-3. If a vertex v is incident with a 5%-face f, then v receives % from f.
R2-4. Each 3-face receives % from each of its incident 7T-vertices.

Let f be a face of G. If d(f) > 5, then ch'(f) > ch(f) — d(f) x £ >0by
R2-3. If d(f) = 4, then ¢k’ (f) = ch(f) = d(f) —4 = 0. If d(f) = 3, then it is
incident with at least two 7+-vertices. It follows that ch (f) > ch(f)+2x £=0
by R2-4.
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Let v be a vertex of G. If d(v) = 2, then ¢h'(v) = ch(v) +2 = 0 by
R2-1. If d(v) = 3, then v is incident with at least one 5t-face and ch'(v) >
ch(v)+ £ +3x 1t = 0 by R2-2 and R2-3. If 4 < d(v) < 6, then ch'(v) = ch(v) =
d(v) —4>0. If 7 < d(v) < 10, then v is incident with at most L%(”)j 3-faces
by (a), it follows that ch'(v) > ch(v) — 1|24 | > 0 by R2-4. If d(v) = 11,
then g3(v) < 7 by (a), and ng(v) < d(v) — [%T(v)] by (b). It follows that
ch'(v) > ch(v) — 2g3(v) — stng(v) > 0 by R2-2 and R2-4. If d(v) > 12, then
g3(v) < [2% | by (a), and nz(v) < d(v) — n2(v) — [©E9] by (b). It follows
that ch'(v) > ch(v) — max{2 + 1g3(v) + & (d(v) — na(v) — [T, Lgz(v) +
15 (d(v) = [202]) > ch(v) — max{2+ $g5(0) + {5 (d(v) = 1= [£{2]), Jgs(v) +
A (d(v) — [%{)7) > 0 by R2-1, R2-2 and R2-4.

Hence, we complete the proof of the lemma. (]

Using Lemma 8, the next result can be proved analogously to Lemma 2.

Lemma 9. FEvery planar graph G without adjacent 4-cycles can be edge-parti-

tioned into two forests Ty, Ty and a subgraph H such that A(Ty) < [M'\,

2
A(Ty) < [2E7 and A(H) < 8.
Our second main result is the following theorem.

Theorem 10. If G is a planar graph without adjacent 4-cycles, then las(G) <
(2507 + 10.

Proof. We can prove it using an argument similar to the proof of Theorem
7. O

Lemma 11. Let G be a connected planar graph with §(G) > 2. If any 3-
cycle is not adjacent to a 4-cycle of G, then G contains an edge xy such that
d(z) +d(y) <9, or G contains a 2-alternating cycle.

Proof. Suppose, to the contrary, that G is such a connected planar graph not
satisfying the lemma. Then we have

(a) Any 3-face is not adjacent to a 3-face;

(b) For any vertex v, g3(v) < L@J;

(c) Let G5 be the subgraph induced by the edges incident with the 2-vertices
of G, then G5 is a forest and there exists a matching M such that all 2-vertices

in (G5 are saturated.
By Euler’s formula |V| — |E| 4+ |F| = 2, we have
(5) D _(2d(v) = 6)+ Y (d(f) = 6) = —6(|V| - |E| + |F|) = —12 < 0.
veV fer

We define ch to be the initial charge. Let ch(v) = 2d(v)—6 for each v € V(QG)
and ch(f) = d(f) — 6 for each f € F(G). In the following, we will reassign
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a new charge denoted by ¢h'(z) to each z € V(G) U F(G) according to the
discharging rules. Since our rules only move charges around, and do not affect
the sum, we have

(6) Yoooch@ = > ch(x)=-12.

2EV(G)UF(G) €V (G)UF(G)

In the following, we will show that ¢k’ (z) > 0 for each z € V(G) U F(G), a
contradiction to (6), completing the proof.
The discharging rules are defined as follows.

R3-1. Each 2-vertex receives 2 from its 2-master.

R3-2. Each 5-vertex sends 1 to each of its incident 3-faces, % to each of its
incident other faces.

R3-3. Each 6T -vertex sends % to each of its incident 3-faces, 1 to each of
its incident 4-faces, % to each of its incident 5-faces.

In particular, we have

Remark 1. Let d(v) > 6, fi1, fa,. .., fa be the faces incident with v in a clockwise
order. If d(f;) = 3, then d(f;11) > 5. v sends at most 3 + = = X to f; and
fi-i—l; If d(fz) = d(f1,+1) = 4, then v sends 2 to fz and f7;+1.

Let f be a face of G. If d(f) > 6, then ch'(f) = ch(f) > 0. If d(f) = 5,
then it is incident with at most two 4~ -vertices. If f is incident with two
4~ -vertices, then the other three vertices must be 6 -vertices. It follows that
ch' (f) > eh(f) + 3 x £ = 0 by R3-3. If f is incident with one 4~ -vertices,
then ch'(f) > ch(f) + 4 x 1 > 0 by R3-2 and R3-3. If f is not incident
with any 4~ -vertices, then ch'(f) > ch(f) +5 x & > 0 by R3-2 and R3-3. If
d(f) = 4, then it is incident with at most two 4~ -vertices. If f is incident with
at least one 4~ -vertex, then f is incident with at least two 6 -vertices. Hence,
ch (f) 2 ch(f)+2x1 =0 by R3-3. If f is not incident with 4~ -vertices,
then f receives at least % from each of its incident vertices by R3-2 and R3-3.
Hence, ch'(f) > ch(f)+4 x 3 =0. If d(f) = 3, then it is incident with at most
one 4~ -vertex. If f is incident with one 4~ -vertex, then the other two vertices
must be 6*-vertices. Hence, ch'(f) > ch(f) +2 x = 0 by R3-3. Otherwise,
f receives at least 1 from each of its incident vertices by R3-2 and R3-3. It
follows that c¢h'(f) > ch(f) +3 x 1= 0.

Let v be a vertex of G. If d(v) = 2, then ¢h (v) = ch(v) +2 = 0 by R3-1. If
3 < d(v) < 4, then ch' (v) = ch(v) > 0. If d(v) = 5, then v is incident with at
most two 3-faces. It follows that ¢k’ (v) > ch(v) —2 x 1 — 3 x 3 >0 by R3-2.

By Remark 1, for d(v) > 6, we only need to consider the case that v is
incident with d(v) 4-faces.

If 6 < d(v) < 7, then ch' (v) > ch(v) — d(v) x 1 > 0 by R3-3. If d(v) > 8,
then ch (v) > ch(v) —2 —d(v) x 1 > 0 by R3-1 and R3-3.

Hence we complete the proof of the lemma. O
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Using Lemma 11, the next result can be proved analogously to Lemma 2.

Lemma 12. Let G be a planar graph. If any 3-cycle is not adjacent to a 4-
cycle, then G has an edge-partition into two forests Ty, To and a subgraph H

such that A(Ty) < [ A(Ty) < [2E)) and A(H) < 4.

Our third main result is the following theorem.

Theorem 13. If G is a planar graph that any 3-cycle is not adjacent to a

J-cycle, then las(G) < [299)] 1 6.
The proof of Theorem 13 is similar to that of Theorem 7, we omit here.
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