DOI QR코드

DOI QR Code

Nelumbinis Folium Methanol Extract Regulates Inducible Nitric Oxide Synthase Signaling Pathways in Mouse Peritoneal Macrophages

하엽(荷葉) 메탄올 추출물의 마우스 대식세포 inducible nitric oxide synthase 합성과 신호전달에 대한 조절

  • Lee, Si-Eun (Department of East-West Medical Science, Graduate School of East-West Medical Science, KyungHee University) ;
  • Lee, Mi-Hwa (Department of Herbology, College of Oriental Medicine, KyungHee University) ;
  • Choi, Ho-Young (Department of Herbology, College of Oriental Medicine, KyungHee University) ;
  • Sohn, Nak-Won (Department of East-West Medical Science, Graduate School of East-West Medical Science, KyungHee University) ;
  • Kang, Hee (Department of East-West Medical Science, Graduate School of East-West Medical Science, KyungHee University)
  • 이시은 (경희대학교 동서의학대학원 동서의과학과) ;
  • 이미화 (경희대학교 한의과대학 본초학교실) ;
  • 최호영 (경희대학교 한의과대학 본초학교실) ;
  • 손낙원 (경희대학교 동서의학대학원 동서의과학과) ;
  • 강희 (경희대학교 동서의학대학원 동서의과학과)
  • Received : 2011.12.14
  • Accepted : 2012.01.13
  • Published : 2012.01.30

Abstract

Objective : Nelumbinis Folium (NF) is used for diarrhea, headache and dizziness in traditional medicine. In this paper, we examined the anti-inflammatory effects of the methanol extract of NF in mouse macrophages. Methods : Peritoneal macrophages from thioglycollate medium-injected mice were cultured and stimulated with lipopolysaccharide(LPS) or LPS/interferon(IFN)-${\gamma}$ for viability assay, cytokine measurement and Western blotting. Results : NF methanol extract suppressed the levels of nitric oxide (NO) through reduction of inducible NO synthase in a concentration-dependent manner. The extract reduced LPS/IFN-${\gamma}$-stimulated STAT1 phosphorylation and LPS-induced $I{\kappa}B{\alpha}$ degradation through inhibition of $I{\kappa}B{\alpha}$ kinase activation. The extract also inhibited p38, JNK/SAPK and ERK1/2 activation. Conclusions : Our findings suggested that NF has anti-inflammatory activity, and have a potential for therapeutic application. Further research is required to investigate its anti-inflammatory active compounds.

Keywords

References

  1. Lawrence T, Willoughby D, Gilroy D. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat. Rev. Immunol. 2002;2:787-95. https://doi.org/10.1038/nri915
  2. Khatami M. Inflammation, aging, and cancer: Tumoricidal versus tumorigenesis of immunity. Cell Biochem Biophysis. 2009;55:55-79. https://doi.org/10.1007/s12013-009-9059-2
  3. Forstermann U, Kleinert H. Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn-Schmiedeberg's Arch Pharmacol. 1995;352:351-64.
  4. Julie B, Jaramillo M, Olivier M. Signalling events involved in interferon-$\gamma$-inducible macrophage nitric oxide generation. Immunology. 2003;108:513-22. https://doi.org/10.1046/j.1365-2567.2003.01620.x
  5. Bosca L, Zeini M, Traves P, Hortelano S. Nitric oxide and cell viability in inflammatory cells:a role for NO in macrophage function and fate. Toxicology. 2005;208(2):249-58. https://doi.org/10.1016/j.tox.2004.11.035
  6. Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta. 2005;1754:253-62. https://doi.org/10.1016/j.bbapap.2005.08.017
  7. Sankar G. Fulvio D, May M. Inhibition of Nuclear Factor Kappa B(NF-$\kappa$B):An emerging theme in anti-inflammatory therapies. Molecular interventions. 2002;2(1):22-35. https://doi.org/10.1124/mi.2.1.22
  8. Dirk B, Sorokin A, Dunn M. Multiple intracellular MAP kinase signaling cascades. Kidney International. 1996;49:1187-98. https://doi.org/10.1038/ki.1996.172
  9. Rawlings J, Rosler K, Harrison D. The JAK/STAT signaling pathway. J Cell Sci. 2004;117:1281-3. https://doi.org/10.1242/jcs.00963
  10. Ahn DG. Illustrated Book of Korean Medical Herbs. 7th ed. Kyohaksa. 1998:684.
  11. Shin MG. Clinical Traditional Herbology. 4th ed. Younglimsa. 1994:358.
  12. Kashiwada Y, Aoshima A, Ikeshiro Y, Hen YP, Furukawa H, Itoigawa M, Fujioka T, Mihashi K, Cosentino M, Natschke SM, Lee KS. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorg Med Chem. 2005;13(2):443-8. https://doi.org/10.1016/j.bmc.2004.10.020
  13. Agnihotri V, Elsohly H, Khan S, Jacob M, Joshi V, Smillie T, Khan I, Walker L. Constituents of Nelumbo nucifera leaves and their antimalarial and antifungal activity. Phytochemistry Lett. 2008;1(2):89-93. https://doi.org/10.1016/j.phytol.2008.03.003
  14. Kim KH, Chang SW, Ryu SY, Choi Su, Lee KR. Phytochemical constituents of Nelumbo nucifera. Natural Product Sciences. 2009;15(2):90-5.
  15. Ohkoshi E, Miyazaki H, Shindo K, Watanabe H, Yoshida A, Yajima H. Constituents from the leaves of Nelumbo nucifera stimulate lipolysis in the white adipose tissue of mice. Planta Med. 2007;73(12):1255-9. https://doi.org/10.1055/s-2007-990223
  16. Lin MC, Kao SH, Chung PJ, Chan KC, Yang MY, Wang CJ. Improvement for high fat diet-induced hepatic injuries and oxidative stress by flavonoid-enriched extract from Nelumbo nucifera leaf. J Agric Food Chem. 2009;57(13):5925-32. https://doi.org/10.1021/jf901058a
  17. Ono Y, H Eri, Fukaya Y, Imai S, Ohizumi Y. Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats. J Ethnopharmacol. 2006;106(2):238-44. https://doi.org/10.1016/j.jep.2005.12.036
  18. Du H, You JS, Zhao X, Park JY, Kim SH, Chang KJ. Antiobesity and hypolipidemic effects of lotus leaf hot water extract with taurine supplementation in rats fed a high fat diet. J Biomed Sci. 2010;17(1):S42. https://doi.org/10.1186/1423-0127-17-S1-S42
  19. Jung HA, Jung YJ, Yoon NY, Jeong DM, Bae HJ, Kim DW, Na DH, Choi JS. Inhibitory effects of Nelumbo nucifera leaves on rat lens aldose reductase, advanced glycation endproducts formation, and oxidative stress. Food Chem Toxicol. 2008;46(12):3818-26. https://doi.org/10.1016/j.fct.2008.10.004
  20. Huang CF, Chen YW, Yang CY, Lin HY, Way TD, Chiang W, Liu SH. Extract of lotus leaf(Nelumbo nucifera) and its active constituent catechin with insulin secretagogue activity. J Agric food chem. 2011;59(4):1087-94. https://doi.org/10.1021/jf103382h
  21. Kim SM, Yun HJ, Yi HS, Won CW, Kim JE, Park SD. Nelumbo nucifera leaves inhibit HASMC proliferation and migration activated by TNF-$\alpha$. Kor J Herbology. 2009;24(4):77-86.
  22. Yoshida H, Kisugi R. Mechanisms of LDL oxidation. Clinica Chimica Acta 2010;411:1875-1862. https://doi.org/10.1016/j.cca.2010.08.038
  23. Jiangsu New Medical College, Chinese Materia Medica. 1th Jungdam. 1998;5957.
  24. Zhang X, Mosser DM. Macrophage activation by endogenous danger signals. J of Pathology. 2008;214:161-78. https://doi.org/10.1002/path.2284
  25. Nathan C. Nitric oxide as a secretory product of mammalian cells. J. FASEB 1992;6:3051-64. https://doi.org/10.1096/fasebj.6.12.1381691
  26. Abramson S, Amin A, Clancy R, Attur M. The role of nitric oxide in tissue destruction. Best Practice & Reasearch clinical rheumatology. 2001;15(5):831-45. https://doi.org/10.1053/berh.2001.0196
  27. Kleinert H, Pautz A, Linker K, Schwarz P. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol. 2004;500:255-66. https://doi.org/10.1016/j.ejphar.2004.07.030
  28. Ihle J. STATs:signal transducers and activators of transcription. Cell. 1996;84:331-4. https://doi.org/10.1016/S0092-8674(00)81277-5
  29. Simon A, Rai U, Fanburg B, Cochran B. Activation of the JAK-STAT pathway by reactive oxygen species. AJP Cell Physiology. 1998;275:1640-52. https://doi.org/10.1152/ajpcell.1998.275.6.C1640
  30. Adcock I, Chung KF, Caramori G, Ito K. Kinase inhibitors and airway inflammation. Eur J Phamacol. 2006;533:118-32. https://doi.org/10.1016/j.ejphar.2005.12.054
  31. Johnson G, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298:1911-2. https://doi.org/10.1126/science.1072682