Abstract
Yoo and Cook (2007) developed an optimal sufficient dimension reduction methodology for the conditional mean in multivariate regression and it is known that their method is asymptotically optimal and its test statistic has a chi-squared distribution asymptotically under the null hypothesis. To check the effect of dimension used in estimation on regression coefficients and the explanatory power of the conditional mean model in multivariate regression, we applied their method to several simulated data sets with various dimensions. A small simulation study showed that it is quite helpful to search for an appropriate dimension for a given data set if we use the asymptotic test for the dimension as well as results from the estimation with several dimensions simultaneously.
본 논문에서는 Yoo와 Cook (2007)에 의하여 제시된 다변량 회귀의 조건부 평균에 대한 최소 불일치 함수 접근법을 통한 최적 차원축소 부분공간의 추정에서 차원의 수가 추정된 선형결합들과 설명력 등에 어떤 영향을 미치는 지를 시뮬레이션 자료를 통하여 알아보았다. 그 결과 추정에 사용된 차원수에 따른 여러 결과들을 차원결정을 위한 검정과 함께 활용하면 모형에 필요한 차원수를 탐색하는데 매우 효과적임을 알 수 있었다.