DOI QR코드

DOI QR Code

Effect of Dimension in Optimal Dimension Reduction Estimation for Conditional Mean Multivariate Regression

다변량회귀 조건부 평균모형에 대한 최적 차원축소 방법에서 차원수가 결과에 미치는 영향

  • Received : 20111100
  • Accepted : 20111200
  • Published : 2012.01.30

Abstract

Yoo and Cook (2007) developed an optimal sufficient dimension reduction methodology for the conditional mean in multivariate regression and it is known that their method is asymptotically optimal and its test statistic has a chi-squared distribution asymptotically under the null hypothesis. To check the effect of dimension used in estimation on regression coefficients and the explanatory power of the conditional mean model in multivariate regression, we applied their method to several simulated data sets with various dimensions. A small simulation study showed that it is quite helpful to search for an appropriate dimension for a given data set if we use the asymptotic test for the dimension as well as results from the estimation with several dimensions simultaneously.

본 논문에서는 Yoo와 Cook (2007)에 의하여 제시된 다변량 회귀의 조건부 평균에 대한 최소 불일치 함수 접근법을 통한 최적 차원축소 부분공간의 추정에서 차원의 수가 추정된 선형결합들과 설명력 등에 어떤 영향을 미치는 지를 시뮬레이션 자료를 통하여 알아보았다. 그 결과 추정에 사용된 차원수에 따른 여러 결과들을 차원결정을 위한 검정과 함께 활용하면 모형에 필요한 차원수를 탐색하는데 매우 효과적임을 알 수 있었다.

Keywords

References

  1. Cook, R. D. and Li, B. (2002). Dimension reduction for the conditional mean, Annals of Statistics, 30, 455-474. https://doi.org/10.1214/aos/1021379861
  2. Cook, R. D. and Nachtsheim, C. J. (1994). Reweighting to achieve Elliptically Contoured Covariates in Regression, Journal of the American Statistical Association, 89, 592-600. https://doi.org/10.2307/2290862
  3. Cook, R. D. and Ni, L. (2005). Sufficient Dimension Reduction via Inverse Regression: A Minimum Discrepancy Approach, Journal of the American Statistical Association, 100, 410-428. https://doi.org/10.1198/016214504000001501
  4. Cook, R. D. and Setodji, C. M. (2003). A model-free test for reduced rank in multivariate regression, Journal of the American Statistical Association, 98, 340-351. https://doi.org/10.1198/016214503000134
  5. Ferguson, T. (1958). A method of generating best asymptotically normal estimates with application to the estimation of bacterial densities, Annals of Mathematical Statistic, 29, 1046-1062. https://doi.org/10.1214/aoms/1177706440
  6. Li, K. C. (1991). Sliced inverse regression for dimension reduction, Journal of the American Statistical Association, 86, 316-342. https://doi.org/10.2307/2290563
  7. Rao, C. R. (1965). Linear Statistical Inference and Its Application, Wiley, New York.
  8. Shapiro, A. (1986). Asymptotic theory of overparameterized structural models, Journal of the American Statistical Association, 81, 142-149. https://doi.org/10.2307/2287981
  9. Yoo, J. K. and Cook, R. D. (2007). Optimal sufficient dimension reduction for the conditional mean in multivariate regression, Biometrika, 94, 231-242. https://doi.org/10.1093/biomet/asm003