DOI QR코드

DOI QR Code

Nonparametric Procedures for Finding the Minimum Effective Dose in Each of Several Group

다중 그룹 상황에서의 최소 효과 용량을 정하는 비모수적 검정법

  • Bae, Su-Hyun (Department of Biostatistics, The Catholic University) ;
  • Kim, Dong-Jae (Department of Biostatistics, The Catholic University)
  • 배수현 (가톨릭대학교 대학원 의학통계학과) ;
  • 김동재 (가톨릭대학교 대학원 의학통계학과)
  • Received : 20110900
  • Accepted : 20111100
  • Published : 2012.01.30

Abstract

The primary interest of drug development studies is to estimate the smallest dose that shows a significant difference from the zero-dose control. The smallest dose is called the Minimum Effective dose(MED). In this paper, we suggest a nonparametric procedure to simultaneously find the MED of each group based on placements. The Monte Carlo simulation is adapted to estimate the power and the family-wise error rate(FWE) of the new procedures with those of discussed nonparametric tests to find MED.

신약 개발 연구 또는 임상시험에서 개발된 약이 0용량 대조군과 비교해 효과 차이가 있는 가장 작은 용량을 최소 효과 용량(MED)이라 한다. 본 논문에서는 다중 그룹 상황에서 동시적(simultaneous)으로 각 각 그룹의 최소 효과 용량을 확인하기 위하여 위치(placement)에 기초한 비모수적 방법을 제시하였다. 또한 Monte Carlo 모의실험을 통하여 기존에 제시된 검정법과 본 논문에서 제안한 검정법의 검정력(power)과 FWE(Family-wise Error Rate)를비교하였다.

Keywords

References

  1. Chen, Y. I. (1999). Nonparametric identification of the minimum effective dose, Biometrics, 55, 1236-1240. https://doi.org/10.1111/j.0006-341X.1999.01236.x
  2. Chen, Y. I. and Jan, S. L. (2002). Nonparametric identification of the minimum effective dose for randomized block designs, Communications in Statistics-Simulation and Computation, 31, 310-312.
  3. Chen, Y. I. and Wolfe, D. A. (1993). Nonparametric procedures for comparing umbrella pattern treatment effect with a control in a one-wal layout, Biometrics, 49, 455-465. https://doi.org/10.2307/2532558
  4. Dunnett, C. W. and Tamhane, A. C. (1991). Step-down multiple tests for comparing treatments with a control in unbalanced one-way layouts, Statistics in medicine, 10, 939-947. https://doi.org/10.1002/sim.4780100614
  5. Hettmansperger, T. P. (1984). Statistical Inference Based on Ranks, John Wiley & Sons, New York.
  6. Hochberg, Y. and Tamhane, A. C. (1987). Multiple Comparison Procedures, John Wiley & Sons, New York.
  7. House, D. E. (1986). Nonparametric version of Williams' test for a randomized block design, Biometrics, 42, 197-190.
  8. Jan, S. L. and Chen, Y. I. (2004). Nonparametric procedures for simultaneous identification of the minimum effective dose in each of several group, Journal of biopharmaceutical Statistics, 14, 781-789. https://doi.org/10.1081/BIP-200025693
  9. Orban, J. and Wolfe, D. A. (1982). A class of distribution-free two-sample tests based on placements, Journal of the Americann statistical Association, 77, 666-672. https://doi.org/10.2307/2287734
  10. Randles, R. H. and Wolfe, D. A. (1979). Introduction to the Theory of Nonparametric Statistics, John Wiley & Sons, New York.
  11. Ruberg, S. J. (1989). Contrasts for identifying the minimum effective dose, Journal of the American Statistical Association, 84, 816-822. https://doi.org/10.2307/2289672
  12. Shirley, E. (1977). A nonparametric equivalent of Williams' test for comparing increasing dose levels of a treatment, Biometrics, 33, 386-389. https://doi.org/10.2307/2529789
  13. Tamhane, A. C., Hochberg, Y. and Dunnett, C. W. (1996). Multiple test procedures for dose finding, Biometrics, 52, 21-37. https://doi.org/10.2307/2533141
  14. Williams, D. A. (1986). A note on Shirley's nonparametric test for comparing several dose levels with a zero-dose control, Biometrics, 42, 183-186. https://doi.org/10.2307/2531254