DOI QR코드

DOI QR Code

표면반사율 모델링을 위한 새로운 N차원 기저함수

New N-dimensional Basis Functions for Modeling Surface Reflectance

  • 권오설 (창원대학교 메카트로닉스공학부 제어계측)
  • Kwon, Oh-Seol (Control & Instrumentation Engineering, Changwon National University)
  • 투고 : 2011.12.19
  • 심사 : 2012.01.13
  • 발행 : 2012.01.30

초록

일반적으로 표면반사율과 분광반사율을 N차원의 칼라 코드로부터 정확히 복원하기 위해서는 N개의 기저함수가 필요하다. 전형적인 렌더링 응용에서 벡터의 덧셈, 스칼라 곱셈 및 성분별 곱셈에 대한 벡터 연산이 이질동형이라고 가정하고 광원의 중첩, 광원-표면간 상호간섭 및 상호반사와 같은 물리적인 연산을 모델링하지만 벡터 연산이 물리적인 현상을 그대로 반영하는 것은 아니다. 그러나 만약 기저함수가 특성함수로써 제한된다면 표면반사율과 분광반사율의 사상 결과 및 벡터들은 렌더링에서 물리적인 연산인 이질이형을 유지하게 된다. 본 논문은 새로운 N차원의 특성함수를 제안하고 N차원의 기저함수로 근사화된 먼셀 칼라 칩에 대하여 제안한 알고리즘의 정확성을 평가할 것이다.

The N basis functions are typically chosen so that Surface reflectance functions(SRFs) and spectral power distributions (SPDs) can be accurately reconstructed from their N-dimensional vector codes. Typical rendering applications assume that the resulting mapping is an isomorphism where vector operations of addition, scalar multiplication, component-wise multiplication on the N-vectors can be used to model physical operations such as superposition of lights, light-surface interactions and inter-reflection. The vector operations do not mirror the physical. However, if the choice of basis functions is restricted to characteristic functions then the resulting map between SPDs/SRFs and N-vectors is anisomorphism that preserves the physical operations needed in rendering. This paper will show how to select optimal characteristic function bases of any dimension N (number of basis functions) and also evaluate how accurately a large set of Munsell color chips can approximated as basis functions of dimension N.

키워드

참고문헌

  1. D. A. Forsyth, "A novel algorithm for color constancy," International Journal of Computer Vision, vol. 4, no. 1, pp. 5-36, 1990 https://doi.org/10.1007/BF00137440
  2. R. T. Tan, K, Nishino, and K. lkeuchi, "Color constancy through inverse-intensity chromaticity space," Journal of the Optical Society of America A, vol. 3, pp. 321-334, 2004
  3. J. P. S. Parkkinen, J. Hallikainen, and T. Jaaskelainen, "Characteristic spectra of Munsell colors," Journal of Society of America A, vol. 6, no. 2, pp. 318-322, 1989 https://doi.org/10.1364/JOSAA.6.000318
  4. O. S. Kwon, C. H. Lee, K. H. Park, and Y. H. Ha, "Surface reflectance estimation using the principal components of similar colors," Journal of Imaging Science and Technology, vol. 51, pp. 175-184, 2007 https://doi.org/10.2352/J.ImagingSci.Technol.(2007)51:2(175)
  5. J. Golz and Donald. L. A. MacLeod, "Influence of scene statistics on colour constancy," Nature, vol. 415, pp. 637-640, 2002 https://doi.org/10.1038/415637a
  6. Wang, W., Hauta-Kasari, M., and Toyooka, S., "Optimal filters design for measuring colors using unsupervised neural network," In Proceddings of the 8th Congress of the International Colorurs Association, AIC Color 97, pp. 419-422, Kyoto, Japan, 1997