DOI QR코드

DOI QR Code

Heuristic Method for RAM Design of Multifunctional System

다기능 시스템의 RAM 목표값 설정을 위한 휴리스틱 기법

  • Received : 2011.05.18
  • Accepted : 2011.12.15
  • Published : 2012.02.01

Abstract

When designing a multifunctional system consisting of many components performing many functions or missions, it is important to determine the reliability, availability, and maintainability (RAM) of the system and components, and we consider system availability to be the optimization criterion. For given intervals of mean time between failure (MTBF) and mean time to repair (MTTR) of the components, we want to determine the values of MTBF and MTTR for all components that satisfy the target availability. A heuristic method is proposed for finding near-optimal solutions through simulation. We also study numerical examples to check effects of model parameters on the optimal solutions.

많은 기능 또는 임무를 수행하는 다수의 부품들로 구성되어 있는 다기능 시스템 개발에 있어 시스템과 부품의 신뢰도(reliability), 가용도(availability) 그리고 정비도(maintainability)를 결정하는 것은 설계 단계에서의 중요한 일이다. 본 논문에서는 시스템을 구성하고 있는 최하위 부품을 대상으로 개발기준의 시스템 목표가용도(target availability)를 만족하는 각 구성품의 MTBF 와 MTTR 을 결정하고자 한다. 대안 생성을 위해 휴리스틱 기법(heuristic method)을 개발하였으며, 각 대안의 시스템 가용도와 수명주기비용을 계산하기 위해 시뮬레이션을 이용한다. 그리고 수치예제를 통해 모형매개변수의 영향을 알아 본다.

Keywords

References

  1. CLC/TR 50126-3, 2006, Guide to the Application of EN50126 for Rolling Stock RAMS.
  2. Chung, I. S., Lee, K. W. and Kim, J. W., 2008, "A Study on RAMS Parameters in the Procurement Requirement for Rolling Stock," Journal of the Korean Society for Railway, Vol. 11, No. 4, pp. 371-377.
  3. Chung, I. S., Lee, K. W. and Kim, J. W., 2008, "Study on Setting up the Quantitative RAM Goals for Rolling Stocks," Journal of the Korean Society for Railway, Vol. 11, No. 4, pp. 390-397.
  4. Eberlein, M. and Hoefer, L., 2002 "The Development of Rail Vehicles from the Perspective of greater Availability," Railway Technical Review-International Journal for Railway Engineers, No. 2-3, pp. 112-121.
  5. Blischke, W. R. and Murthy, D. N. P., 2000, Reliability Modeling, Prediction, and Optimization, Wiley Interscience, New York.
  6. Kuo, W., Parasad, V. R., Tillman, F. A. and Hwang, C. L., 2001, Optimal Reliability Design: Fundamentals and Applications, Cambridge University Press, New York.
  7. Gen, M. and Kim, J. R., 1999, "GA-based Reliability Design: State-of-the-art Survey," Computers and Industrial Engineering, Vol. 37, No. 1-2, pp. 151-155. https://doi.org/10.1016/S0360-8352(99)00043-1
  8. Painton, L. and Campbell, J., 1994, "Identification of Components to Optimize Improvements in System Reliability," Proceedings of the SRA PSAM-II Conference on System-based Methods for the Design and Operation of Technological Systems and Processes, pp. 10.15-10.20.
  9. Painton, L. and Campbell, J., 1995, "Genetic Algorithms in Optimization of System Reliability," IEEE Transactions on Reliability, Vol. 44, No. 2, pp. 172-178. https://doi.org/10.1109/24.387368
  10. Yun, W. Y., Moon, I. K. and Kim, G. R., 2008, "Simulation-based Maintenance Support System for Multi-functional Complex Systems," Production Planning and Control, Vol. 19, No. 4, pp. 365-378. https://doi.org/10.1080/09537280802034398
  11. Chung, I. H. and Park, S. J., 2008, "Effect Analysis of Factors for Improving Accuracy of RAM Simulation in Weapon System," Journal of the Korea Institute of Military Science and Technology, Vol. 11, No. 6, pp. 102-116.
  12. Marquez, A. C., Heguedas, A. S. and Iung, B., 2005, "Monte Carlo-based Assessment of System Availability. A Case Study for Cogeneration Plants," Reliability Engineering and System Safety, Vol. 88, No. 3, pp. 273-289. https://doi.org/10.1016/j.ress.2004.07.018
  13. Lander, T. L., Taha, H. A. and King, C. L., 1991, "A Reliability Simulation Approach for Use in the Design Process," IEEE Transactions on Reliability, Vol. 40, No. 2, pp.177-181. https://doi.org/10.1109/24.87124
  14. Cha, J. H., Chung, I. S., Kim, J. W. and Yu, Y. H., 2009, "The Study on Setting up KTX-II"s RAM Goals for Requirement Train-set," Proceedings of 2009 Spring Conference of the Korea Society for Railway, pp. 191-198.
  15. Alexander, A. J., 1988, The Cost and Benefits of Reliability in Military Equipment, The RAND Corporation, Santa Monica.
  16. IEC62278, 2002, Railway applications-The specification and demonstration of Reliability, Availability, Maintainability and Safety (RAMS).
  17. Block, K. C. and Geitner, F. K., 1994, An Introduction to Machinery Reliability Assessment, Gulf Publishing Company, Houston.
  18. Chung, I. H., 2009 "Simulation-based Repair Policy for MIME System," Ph. D Thesis, Pusan National University.
  19. Rausand, M. and Hoyland, A., 2004, System Reliability Theory: Models, Statistical Methods, and Applications: Second Edition, Wiley Interscience, New York.
  20. Seo, S. K., Kim, H. G, Kwon, H. M., Cha, M. S., Yun, W. Y. and Cha, J. H., 2008, Reliability Engineering, Kyobo, Seoul.

Cited by

  1. Simulation-based Reliability and Maintainability Design of a Warship vol.39, pp.6, 2013, https://doi.org/10.7232/JKIIE.2013.39.6.461