DOI QR코드

DOI QR Code

Evaluation of Ultra-Low Dose CT in the Diagnosis of Pediatric-Like Fractures Using an Experimental Animal Study

  • Moritz, Joerg D. (Department of Diagnostic Radiology, Pediatric Radiology and Sonography, University Hospital Schleswig-Holstein) ;
  • Hoffmann, Beata (Department of Diagnostic Radiology, University Hospital Schleswig-Holstein) ;
  • Sehr, Dirk (Department of Diagnostic Radiology, University Hospital Schleswig-Holstein) ;
  • Keil, Katrin (Department of Diagnostic Radiology, University Hospital Schleswig-Holstein) ;
  • Eggerking, Juliane (Department of Diagnostic Radiology, University Hospital Schleswig-Holstein) ;
  • Groth, Godo (Department of Diagnostic Radiology, University Hospital Schleswig-Holstein) ;
  • Caliebe, Amke (Department of Medical Informatics and Statistics, University Hospital Schleswig-Holstein) ;
  • Dischinger, Jens (North German Seminar of Radiation Protection, University Kiel) ;
  • Heller, Martin (Department of Diagnostic Radiology, University Hospital Schleswig-Holstein) ;
  • Bolte, Hendrik (Department of Diagnostic Radiology, University Hospital Schleswig-Holstein)
  • Published : 2012.04.01

Abstract

Objective: The aim of this prospective study was to evaluate the performance of ultra-low dose CT for the diagnosis of pediatric-like fractures and ascertain the lowest dose level sufficient for diagnostics. Materials and Methods: Fifty-one bones of young pig cadavers were artificially fractured and subsequently examined by using a 64 multi-detector CT with 36 various dose levels down to a dose comparable with that of X-rays. Two pediatric radiologists analysed the CT scans according to the presence or absence of a fracture, determination of the fracture type and the displacement as well as the diagnostic certainty. For each dose protocol, a success rate for the correct determination of the above-mentioned CT analyses was calculated. A success rate of at least 95% was considered sufficient for diagnostics. Results: All but the lowest dose levels were sufficient to identify the fracture. Only the two lowest dose levels were insufficient to detect the fracture type. All dose levels were adequate for the identification of the displacement. The lowest dose level sufficient for diagnostics was 120 kVp, 11 mAs, and pitch 1.5, with a CTDIvol of 10% of a standard dose and an effective dose three times as large as that of X-rays. Conclusion: Ultra-low dose CT provides the feasibility of a significant dose reduction, still allowing sufficient diagnostics of pediatric-like fractures.

Keywords

References

  1. Cho KH, Lee SM, Lee YH, Suh KJ. Ultrasound diagnosis of either an occult or missed fracture of an extremity in pediatric-aged children. Korean J Radiol 2010;11:84-94 https://doi.org/10.3348/kjr.2010.11.1.84
  2. Moritz JD, Berthold LD, Soenksen SF, Alzen GF. Ultrasound in diagnosis of fractures in children: unnecessary harassment or useful addition to X-ray? Ultraschall Med 2008;29:267-274 https://doi.org/10.1055/s-2008-1027329
  3. Moritz JD, Hoffmann B, Meuser SH, Sehr DH, Caliebe A, Heller M. [Is ultrasound equal to X-ray in pediatric fracture diagnosis?]. Rofo 2010;182:706-714 https://doi.org/10.1055/s-0029-1245371
  4. Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001;176:289-296 https://doi.org/10.2214/ajr.176.2.1760289
  5. Diederichs CG, Engelke WG, Richter B, Hermann KP, Oestmann JW. Must radiation dose for CT of the maxilla and mandible be higher than that for conventional panoramic radiography? AJNR Am J Neuroradiol 1996;17:1758-1760
  6. Mulkens TH, Marchal P, Daineffe S, Salgado R, Bellinck P, te Rijdt B, et al. Comparison of low-dose with standarddose multidetector CT in cervical spine trauma. AJNR Am J Neuroradiol 2007;28:1444-1450 https://doi.org/10.3174/ajnr.A0608
  7. Dammert S, Funke M, Merten HA, Obernauer S, Grabbe E. [Multislice helical CT (MSCT) for mid-facial trauma: Optimization of parameters for scanning and reconstruction]. Rofo 2002;174:874-879 https://doi.org/10.1055/s-2002-32682
  8. Bohy P, de Maertelaer V, Roquigny A, Keyzer C, Tack D, Gevenois PA. Multidetector CT in patients suspected of having lumbar disk herniation: comparison of standard-dose and simulated low-dose techniques. Radiology 2007;244:524-531 https://doi.org/10.1148/radiol.2442060606
  9. Connor SE, Arscott T, Berry J, Greene L, O'Gorman R. Precision and accuracy of low-dose CT protocols in the evaluation of skull landmarks. Dentomaxillofac Radiol 2007;36:270-276 https://doi.org/10.1259/dmfr/90016954
  10. Lutz J, Jäger V, Hempel MJ, Srivastav S, Reiser M, Jäger L. Delineation of temporal bone anatomy: feasibility of low-dose 64-row CT in regard to image quality. Eur Radiol 2007;17:2638-2645 https://doi.org/10.1007/s00330-007-0578-1
  11. Chassang M, Grimaud A, Cucchi JM, Novellas S, Amoretti N, Chevallier P, et al. Can low-dose computed tomographic scan of the spine replace conventional radiography? An evaluation based on imaging myelomas, bone metastases, and fractures from osteoporosis. Clin Imaging 2007;31:225-227 https://doi.org/10.1016/j.clinimag.2007.04.005
  12. Goodman LA. On simultaneous confidence intervals for multinominal proportions. Technometrics 1965;7:247-254 https://doi.org/10.1080/00401706.1965.10490252
  13. Stuart A. A test for homogeneity of the marginal distribution in a two way classification. Biometrika 1955;42:412-416 https://doi.org/10.1093/biomet/42.3-4.412
  14. R Development Core Team. R: A language and environment for statistical computing. Version 2.10.1., 2009. R Foundation for Statistical Computing. Vienna, Austria: 2007. http://www. R-project.org. ISBN: 3-900-051-07-0
  15. Horger M, Claussen CD, Bross-Bach U, Vonthein R, Trabold T, Heuschmid M, et al. Whole-body low-dose multidetector rowCT in the diagnosis of multiple myeloma: an alternative to conventional radiography. Eur J Radiol 2005;54:289-297 https://doi.org/10.1016/j.ejrad.2004.04.015
  16. Gleeson TG, Moriarty J, Shortt CP, Gleeson JP, Fitzpatrick P, Byrne B, et al. Accuracy of whole-body low-dose multidetector CT (WBLDCT) versus skeletal survey in the detection of myelomatous lesions, and correlation of disease distribution with whole-body MRI (WBMRI). Skeletal Radiol 2009;38:225- 236 https://doi.org/10.1007/s00256-008-0607-4
  17. Huda W, Vance A. Patient radiation doses from adult and pediatric CT. AJR Am J Roentgenol 2007;188:540-546 https://doi.org/10.2214/AJR.06.0101
  18. Kluner C, Hein PA, Gralla O, Hein E, Hamm B, Romano V, et al. Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi? J Comput Assist Tomogr 2006;30:44-50 https://doi.org/10.1097/01.rct.0000191685.58838.ef
  19. Rogalla P, Klüner C, Taupitz M. [Ultra-low-dose CT to search for stones in kidneys and collecting system]. Aktuelle Urol 2004;35:307-309 https://doi.org/10.1055/s-2004-830031
  20. Cohnen M, Vogt C, Beck A, Andersen K, Heinen W, vom Dahl S, et al. Feasibility of MDCT Colonography in ultra-low-dose technique in the detection of colorectal lesions: comparison with high-resolution video colonoscopy. AJR Am J Roentgenol 2004;183:1355-1359 https://doi.org/10.2214/ajr.183.5.1831355
  21. Wrathall AE, Bailey J, Hebert CN. A radiographic study of development of the appendicular skeleton in the fetal pig. Res Vet Sci 1974;17:154-168
  22. Connolly SA, Jaramillo D, Hong JK, Shapiro F. Skeletal development in fetal pig specimens: MR imaging of femur with histologic comparison. Radiology 2004;233:505-514 https://doi.org/10.1148/radiol.2332030131
  23. Kleinman PL, Zurakowski D, Strauss KJ, Cleveland RH, Perez-Rosello JM, Nichols DP, et al. Detection of simulated inflicted metaphyseal fractures in a fetal pig model: image optimization and dose reduction with computed radiography. Radiology 2008;247:381-390 https://doi.org/10.1148/radiol.2472070811

Cited by

  1. Radiation Dose Reduction via Sinogram Affirmed Iterative Reconstruction and Automatic Tube Voltage Modulation (CARE kV) in Abdominal CT vol.14, pp.6, 2013, https://doi.org/10.3348/kjr.2013.14.6.886
  2. Multidetector Computed Tomography for the Assessment of Adnexal Mass: Is Unenhanced CT Scan Necessary? vol.15, pp.1, 2012, https://doi.org/10.3348/kjr.2014.15.1.72
  3. Radiation dose reduction in multidetector CT in fracture evaluation vol.90, pp.1077, 2012, https://doi.org/10.1259/bjr.20170240
  4. New and emerging patient-centered CT imaging and image-guided treatment paradigms for maxillofacial trauma vol.25, pp.5, 2012, https://doi.org/10.1007/s10140-018-1616-9
  5. Computed tomography with low-dose radiation versus standard-dose radiation for diagnosing fractures: systematic review and meta-analysis vol.139, pp.4, 2012, https://doi.org/10.1590/1516-3180.2020.0374.r3.1902021
  6. A systematised literature review: Can low-dose whole-body computed tomography replace a radiographic skeletal survey when investigating paediatric non-accidental injury? vol.27, pp.None, 2012, https://doi.org/10.1016/j.fri.2021.200481
  7. Ultra-low-dose computed tomography and its utility in wrist trauma in the emergency department vol.63, pp.2, 2022, https://doi.org/10.1177/0284185121989958