DOI QR코드

DOI QR Code

80-kVp CT Using Iterative Reconstruction in Image Space Algorithm for the Detection of Hypervascular Hepatocellular Carcinoma: Phantom and Initial Clinical Experience

  • Hur, Sae-Beom (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Lee, Jeong-Min (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Kim, Soo-Jin (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Park, Ji-Hoon (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Han, Joon-Koo (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Choi, Byung-Ihn (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine)
  • Published : 2012.04.01

Abstract

Objective: To investigate whether the low-tube-voltage (80-kVp), intermediate-tube-current (340-mAs) MDCT using the Iterative Reconstruction in Image Space (IRIS) algorithm improves lesion-to-liver contrast at reduced radiation dosage while maintaining acceptable image noise in the detection of hepatocellular carcinomas (HCC) in thin (mean body mass index, $24{\pm}0.4kg/m^{2}$) adults. Subjects and Methods: A phantom simulating the liver with HCC was scanned at 50-400 mAs for 80, 100, 120 and 140-kVp. In addition, fifty patients with HCC who underwent multiphasic liver CT using dual-energy (80-kVp and 140-kVp) arterial scans were enrolled. Virtual 120-kVP scans (protocol A) and 80-kVp scans (protocol B) of the late arterial phase were reconstructed with filtered back-projection (FBP), while corresponding 80-kVp scans were reconstructed with IRIS (protocol C). Contrast-to-noise ratio (CNR) of HCCs and abdominal organs were assessed quantitatively, whereas lesion conspicuity, image noise, and overall image quality were assessed qualitatively. Results: IRIS effectively reduced image noise, and yielded 29% higher CNR than the FBP at equivalent tube voltage and current in the phantom study. In the quantitative patient study, protocol C helped improve CNR by 51% and 172% than protocols A and B (p < 0.001), respectively, at equivalent radiation dosage. In the qualitative study, protocol C acquired the highest score for lesion conspicuity albeit with an inferior score to protocol A for overall image quality (p < 0.001). Mean effective dose was 2.63-mSv with protocol A and 1.12-mSv with protocols B and C. Conclusion: CT using the low-tube-voltage, intermediate-tube-current and IRIS help improve lesion-to-liver CNR of HCC in thin adults during the arterial phase at a lower radiation dose when compared with the standard technique using 120-kVp and FBP.

Keywords

References

  1. Bruix J, Sherman M; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 2011;53:1020-1022. doi: 10.1002/ hep.24199
  2. Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 2001;35:421-430 https://doi.org/10.1016/S0168-8278(01)00130-1
  3. Sherman M. The radiological diagnosis of hepatocellular carcinoma. Am J Gastroenterol 2010;105:610-612 https://doi.org/10.1038/ajg.2009.663
  4. Schindera ST, Nelson RC, Yoshizumi T, Toncheva G, Nguyen G, DeLong DM, et al. Effect of automatic tube current modulation on radiation dose and image quality for low tube voltage multidetector row CT angiography: phantom study. Acad Radiol 2009;16:997-1002 https://doi.org/10.1016/j.acra.2009.02.021
  5. Funama Y, Awai K, Miyazaki O, Nakayama Y, Goto T, Omi Y, et al. Improvement of low-contrast detectability in low-dose hepatic multidetector computed tomography using a novel adaptive filter: evaluation with a computer-simulated liver including tumors. Invest Radiol 2006;41:1-7 https://doi.org/10.1097/01.rli.0000188026.20172.5d
  6. Funama Y, Awai K, Nakayama Y, Kakei K, Nagasue N, Shimamura M, et al. Radiation dose reduction without degradation of low-contrast detectability at abdominal multisection CT with a low-tube voltage technique: phantom study. Radiology 2005;237:905-910 https://doi.org/10.1148/radiol.2373041643
  7. Leoni S, Piscaglia F, Golfieri R, Camaggi V, Vidili G, Pini P, et al. The impact of vascular and nonvascular findings on the noninvasive diagnosis of small hepatocellular carcinoma based on the EASL and AASLD criteria. Am J Gastroenterol 2010;105:599-609 https://doi.org/10.1038/ajg.2009.654
  8. Kim KW, Lee JM, Klotz E, Park HS, Lee DH, Kim JY, et al. Quantitative CT color mapping of the arterial enhancement fraction of the liver to detect hepatocellular carcinoma. Radiology 2009;250:425-434 https://doi.org/10.1148/radiol.2501072196
  9. Kim SH, Choi BI, Lee JY, Kim SJ, So YH, Eun HW, et al. Diagnostic accuracy of multi-/single-detector row CT and contrast-enhanced MRI in the detection of hepatocellular carcinomas meeting the milan criteria before liver transplantation. Intervirology 2008;51 Suppl 1:52-60 https://doi.org/10.1159/000122598
  10. McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J. Strategies for reducing radiation dose in CT. Radiol Clin North Am 2009;47:27-40 https://doi.org/10.1016/j.rcl.2008.10.006
  11. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 2010;30:52-60 https://doi.org/10.1055/s-0030-1247132
  12. Israel GM, Cicchiello L, Brink J, Huda W. Patient size and radiation exposure in thoracic, pelvic, and abdominal CT examinations performed with automatic exposure control. AJR Am J Roentgenol 2010;195:1342-1346 https://doi.org/10.2214/AJR.09.3331
  13. Guimarães LS, Fletcher JG, Harmsen WS, Yu L, Siddiki H, Melton Z, et al. Appropriate patient selection at abdominal dual-energy CT using 80 kV: relationship between patient size, image noise, and image quality. Radiology 2010;257:732-742 https://doi.org/10.1148/radiol.10092016
  14. Kalra MK, Maher MM, Blake MA, Lucey BC, Karau K, Toth TL, et al. Detection and characterization of lesions on low-radiationdose abdominal CT images postprocessed with noise reduction filters. Radiology 2004;232:791-797 https://doi.org/10.1148/radiol.2323031563
  15. Marin D, Nelson RC, Schindera ST, Richard S, Youngblood RS, Yoshizumi TT, et al. Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm--initial clinical experience. Radiology 2010;254:145-153 https://doi.org/10.1148/radiol.09090094
  16. Marin D, Nelson RC, Samei E, Paulson EK, Ho LM, Boll DT, et al. Hypervascular liver tumors: low tube voltage, high tube current multidetector CT during late hepatic arterial phase for detection--initial clinical experience. Radiology 2009;251:771- 779 https://doi.org/10.1148/radiol.2513081330
  17. Nakayama Y, Awai K, Funama Y, Hatemura M, Imuta M, Nakaura T, et al. Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 2005;237:945-951 https://doi.org/10.1148/radiol.2373041655
  18. Schindera ST, Nelson RC, Mukundan S Jr, Paulson EK, Jaffe TA, Miller CM, et al. Hypervascular liver tumors: low tube voltage, high tube current multi-detector row CT for enhanced detection--phantom study. Radiology 2008;246:125-132 https://doi.org/10.1148/radiol.2461070307
  19. Moon JH, Park EA, Lee W, Yin YH, Chung JW, Park JH, et al. The diagnostic accuracy, image quality and radiation dose of 64-slice dual-source CT in daily practice: a single institution's experience. Korean J Radiol 2011;12:308-318 https://doi.org/10.3348/kjr.2011.12.3.308
  20. Sigal-Cinqualbre AB, Hennequin R, Abada HT, Chen X, Paul JF. Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 2004;231:169-174 https://doi.org/10.1148/radiol.2311030191
  21. Yeh BM, Shepherd JA, Wang ZJ, Teh HS, Hartman RP, Prevrhal S. Dual-energy and low-kVp CT in the abdomen. AJR Am J Roentgenol 2009;193:47-54 https://doi.org/10.2214/AJR.09.2592
  22. Nuyts J, De Man B, Dupont P, Defrise M, Suetens P, Mortelmans L. Iterative reconstruction for helical CT: a simulation study. Phys Med Biol 1998;43:729-737 https://doi.org/10.1088/0031-9155/43/4/003
  23. Lasio GM, Whiting BR, Williamson JF. Statistical reconstruction for x-ray computed tomography using energyintegrating detectors. Phys Med Biol 2007;52:2247-2266 https://doi.org/10.1088/0031-9155/52/8/014
  24. Gunn ML, Kohr JR. State of the art: technologies for computed tomography dose reduction. Emerg Radiol 2010;17:209-218 https://doi.org/10.1007/s10140-009-0850-6
  25. Kim YJ, Han JK, Kim SH, Jeong JY, An SK, Han CJ, et al. Small-bowel obstruction in a phantom model of ex vivo porcine intestine: comparison of PACS stack and tile modes for CT interpretation. Radiology 2005;236:867-871 https://doi.org/10.1148/radiol.2363041193
  26. Tipnis S, Ramachandra A, Huda W, Hardie A, Schoepf J, Costello P, et al. Iterative reconstruction in image space (IRIS) and lesion detection in abdominal CT. Medical Imaging 2010;7622:1-12
  27. Pontana F, Pagniez J, Flohr T, Faivre JB, Duhamel A, Remy J, et al. Chest computed tomography using iterative reconstruction vs filtered back projection (Part 1): Evaluation of image noise reduction in 32 patients. Eur Radiol 2011;21:627-635 https://doi.org/10.1007/s00330-010-1990-5
  28. Samei E, Dobbins JT 3rd, Lo JY, Tornai MP. A framework for optimising the radiographic technique in digital X-ray imaging. Radiat Prot Dosimetry 2005;114:220-229 https://doi.org/10.1093/rpd/nch562
  29. Kim KS, Lee JM, Kim SH, Kim KW, Kim SJ, Cho SH, et al. Image fusion in dual energy computed tomography for detection of hypervascular liver hepatocellular carcinoma: phantom and preliminary studies. Invest Radiol 2010;45:149- 157 https://doi.org/10.1097/RLI.0b013e3181d32119
  30. Prakash P, Kalra MK, Gilman MD, Shepard JA, Digumarthy SR. Is weight-based adjustment of automatic exposure control necessary for the reduction of chest CT radiation dose? Korean J Radiol 2010;11:46-53 https://doi.org/10.3348/kjr.2010.11.1.46
  31. Fletcher JG, Takahashi N, Hartman R, Guimaraes L, Huprich JE, Hough DM, et al. Dual-energy and dual-source CT: is there a role in the abdomen and pelvis? Radiol Clin North Am 2009;47:41-57 https://doi.org/10.1016/j.rcl.2008.10.003
  32. Fleischmann D, Kamaya A. Optimal vascular and parenchymal contrast enhancement: the current state of the art. Radiol Clin North Am 2009;47:13-26 https://doi.org/10.1016/j.rcl.2008.10.009
  33. Yoon SH, Lee JM, So YH, Hong SH, Kim SJ, Han JK, et al. Multiphasic MDCT enhancement pattern of hepatocellular carcinoma smaller than 3 cm in diameter: tumor size and cellular differentiation. AJR Am J Roentgenol 2009;193:W482-W489 https://doi.org/10.2214/AJR.08.1818
  34. McCollough CH, Bruesewitz MR, Kofler JM Jr. CT dose reduction and dose management tools: overview of available options. Radiographics 2006;26:503-512 https://doi.org/10.1148/rg.262055138
  35. Graser A, Johnson TR, Chandarana H, Macari M. Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol 2009;19:13-23 https://doi.org/10.1007/s00330-008-1122-7
  36. 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP 1991;21:1-201 https://doi.org/10.1016/0146-6453(91)90009-6
  37. Rigby AS. Statistical methods in epidemiology. v. Towards an understanding of the kappa coefficient. Disabil Rehabil 2000;22:339-344 https://doi.org/10.1080/096382800296575
  38. Szucs-Farkas Z, Kurmann L, Strautz T, Patak MA, Vock P, Schindera ST. Patient exposure and image quality of low-dose pulmonary computed tomography angiography: comparison of 100- and 80-kVp protocols. Invest Radiol 2008;43:871-876 https://doi.org/10.1097/RLI.0b013e3181875e86
  39. Szucs-Farkas Z, Strautz T, Patak MA, Kurmann L, Vock P,Schindera ST. Is body weight the most appropriate criterion to select patients eligible for low-dose pulmonary CT angiography? Analysis of objective and subjective image quality at 80 kVp in 100 patients. Eur Radiol 2009;19:1914- 1922 https://doi.org/10.1007/s00330-009-1385-7

Cited by

  1. Preliminary Application of High-Definition CT Gemstone Spectral Imaging in Hand and Foot Tendons vol.13, pp.6, 2012, https://doi.org/10.3348/kjr.2012.13.6.743
  2. Low Tube Voltage Intermediate Tube Current Liver MDCT: Sinogram-Affirmed Iterative Reconstruction Algorithm for Detection of Hypervascular Hepatocellular Carcinoma vol.201, pp.1, 2012, https://doi.org/10.2214/ajr.12.10000
  3. Radiation Dose Reduction via Sinogram Affirmed Iterative Reconstruction and Automatic Tube Voltage Modulation (CARE kV) in Abdominal CT vol.14, pp.6, 2013, https://doi.org/10.3348/kjr.2013.14.6.886
  4. A New Era in Computed Tomographic Dose Optimization: The Impact of Iterative Reconstruction on Image Quality and Radiation Dose vol.37, pp.6, 2012, https://doi.org/10.1097/rct.0b013e318282d95a
  5. Recent developments of dual-energy CT in oncology vol.24, pp.4, 2012, https://doi.org/10.1007/s00330-013-3087-4
  6. Original Research. Dual-Energy Liver CT: Effect of Monochromatic Imaging on Lesion Detection, Conspicuity, and Contrast-to-Noise Ratio of Hypervascular Lesions on Late Arterial Phase vol.203, pp.3, 2012, https://doi.org/10.2214/ajr.13.11337
  7. Multidetector Computed Tomography for the Assessment of Adnexal Mass: Is Unenhanced CT Scan Necessary? vol.15, pp.1, 2012, https://doi.org/10.3348/kjr.2014.15.1.72
  8. Preliminary Application of High-Definition Computed Tomographic Gemstone Spectral Imaging in Lung Cancer vol.38, pp.1, 2014, https://doi.org/10.1097/rct.0b013e3182a21633
  9. Combining automated attenuation-based tube voltage selection and iterative reconstruction: a liver phantom study vol.24, pp.3, 2012, https://doi.org/10.1007/s00330-013-3049-x
  10. Radiation Dose and Imaging Quality of Abdominal Computed Tomography before and after Scan Protocol Adjustment: Single-Institution Experience in Three Years vol.71, pp.6, 2014, https://doi.org/10.3348/jksr.2014.71.6.278
  11. CT Liver Imaging: What is New? vol.3, pp.3, 2015, https://doi.org/10.1007/s40134-015-0088-x
  12. State of the Art: Iterative CT Reconstruction Techniques vol.276, pp.2, 2012, https://doi.org/10.1148/radiol.2015132766
  13. A pilot study using low-dose Spectral CT and ASIR (Adaptive Statistical Iterative Reconstruction) algorithm to diagnose solitary pulmonary nodules vol.15, pp.None, 2012, https://doi.org/10.1186/s12880-015-0096-6
  14. Attenuation-Based Automatic Kilovoltage Selection and Sinogram-Affirmed Iterative Reconstruction: Effects on Radiation Exposure and Image Quality of Portal-Phase Liver CT vol.16, pp.1, 2015, https://doi.org/10.3348/kjr.2015.16.1.69
  15. Dual-energy CT of liver metastases in patients with uveal melanoma vol.3, pp.None, 2012, https://doi.org/10.1016/j.ejro.2016.10.003
  16. Comparison of Knowledge-based Iterative Model Reconstruction and Hybrid Reconstruction Techniques for Liver CT Evaluation of Hypervascular Hepatocellular Carcinoma vol.40, pp.6, 2016, https://doi.org/10.1097/rct.0000000000000455
  17. Preliminary application of multiple parameters spectral CT in the diagnosis of ovarian cancer vol.96, pp.32, 2017, https://doi.org/10.1097/md.0000000000007786
  18. Preoperative Assessment of Hepatocellular Carcinoma with Split-Bolus Combined Phase Contrast-Enhanced Computed Tomography vol.23, pp.None, 2017, https://doi.org/10.12659/msm.904129
  19. Low-Dose Computerized Tomography (CT) Imaging of Coronary Artery Stents: Potential Value of Sinogram Affirmed Iterative Reconstruction vol.14, pp.4, 2012, https://doi.org/10.5812/iranjradiol.24272
  20. Reduction of the radiation dose and the amount of contrast material in hepatic dynamic CT using low tube voltage and adaptive iterative dose reduction 3-dimensional vol.97, pp.34, 2018, https://doi.org/10.1097/md.0000000000011857
  21. High-pitch, 120 kVp/30 mAs, low-dose dual-source chest CT with iterative reconstruction: Prospective evaluation of radiation dose reduction and image quality compared with those of standard-pitch low- vol.14, pp.1, 2019, https://doi.org/10.1371/journal.pone.0211097
  22. Comparison of low kVp CT and dual-energy CT for the evaluation of hypervascular hepatocellular carcinoma vol.46, pp.7, 2021, https://doi.org/10.1007/s00261-020-02888-7
  23. Deep learning reconstruction for contrast-enhanced CT of the upper abdomen: similar image quality with lower radiation dose in direct comparison with iterative reconstruction vol.31, pp.8, 2012, https://doi.org/10.1007/s00330-021-07712-4