DOI QR코드

DOI QR Code

Isolation and Identification Antifungal Compounds from Vitex trifolia L.

만형자(Vitex trifolia L.)로부터 항균활성물질의 분리 및 구조결정

  • Park, Young-Sik (Department of Bioenvironmental Chemistry, College of Agricultural and Life Science, Chungnam National University) ;
  • Hwang, Joo-Tae (Department of Bioenvironmental Chemistry, College of Agricultural and Life Science, Chungnam National University) ;
  • Kim, Young-Shin (Department of Bioenvironmental Chemistry, College of Agricultural and Life Science, Chungnam National University) ;
  • Kim, Jin-Cheol (Green Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Lim, Chi-Hwan (Department of Bioenvironmental Chemistry, College of Agricultural and Life Science, Chungnam National University)
  • 박영식 (충남대학교 농업생명과학대학 생물환경화학과) ;
  • 황주태 (충남대학교 농업생명과학대학 생물환경화학과) ;
  • 김영신 (충남대학교 농업생명과학대학 생물환경화학과) ;
  • 김진철 (한국화학연구원 녹색화학분야) ;
  • 임치환 (충남대학교 농업생명과학대학 생물환경화학과)
  • Received : 2012.09.05
  • Accepted : 2012.11.20
  • Published : 2012.12.31

Abstract

Vitex trifolia L. is a full grown fruit of Vitex rotundifolia L. (Verbenaceae). It has been used for treating headache, dizziness, toothache and removal of fever as a traditional medicine in Korea. V. trifolia (500 g) were extracted three times with 80% aqueous MeOH at room temperature. The MeOH extract (38 g) was successively partitioned with n-hexane, EtOAc, n-BuOH and $H_2O$. Both n-hexane and EtOAc fractions showed more than 80% antifungal activity in vivo against several plant pathogens at 2000 ppm. Successive repeated silica gel, Sephadex LH-20, preparative TLC, and preparative HPLC of these fractions led to isolation of three compounds. Using mainly mass spectroscopy and nuclear magnatic resonance (NMR) spectroscopy, their chemical structures were determined as agnuside(1), chrysosplenol B(2), and artemetin(3). Compound 2 was isolated for the first time from V. trifolia. Study on in vitro and in vivo antifungal activities of the isolated compounds is in progress.

합성농약의 단점을 보완하기 위하여 무공해, 무독성의 환경 친화적인 농약이 요구되고 있다. 특히, 식물 유래 천연물이 각광받고 있으며 이러한 관점에서 선행 실험 결과 강한 항균활성을 나타낸 만형자(Vitex trifolia L.)로부터 항균활성물질을 분리하여 기기분석을 통해 화학구조를 결정하고, 항균활성 검정을 실시하였다. 만형자를 80% aqueous MeOH로 추출한 후 n-hexane, EtOAc, n-BuOH 및 $H_2O$ 등 4개의 층으로 분획하였다. 이들 분획물을 이용하여 2000 ppm 수준으로 6가지 식물병원균에 대해 in vivo 항균활성을 검정한 결과, n-hexane 분획물이 벼 도열병균에 대해 88%, EtOAc 분획물이 벼 도열병균에 대해 85%, 밀 붉은녹병에 대해 87%의 방제효과를 나타내었다. Silica gel column, Sephadex LH-20 column chromatography, preparative HPLC를 사용하여 단일 화합물로 분리한 다음, ESI-MS, $^1H$-NMR, $^{13}C$-NMR의 기기분석 결과를 해석하여 agnuside, chrysosplenol B, artemetin로 구조를 동정하였다. Chrysosplenol B는 만형자로부터 처음 분리되었다. 분리한 물질들의 in vitro 및 in vivo 항균활성에 대한 연구를 진행하고 있다.

Keywords

References

  1. Adamu, A. K. (2009) Isolation and characterization of antibacterial compounds from a Garcinia livingstonei (Clusiaceae) leaf extract. University of Pretoria 39-40, 72-76.
  2. Centro, P. de P. Q., A. Biolgicase, C. M. Departamento de and M. Faculdade de (2002) Evaluation of the antiedematogenic activity of artemetin isolated from Cordia curassavica DC. Brazilian J. Med. Biol. Res. 35:1228-1231.
  3. Chikako, M. (2003) Antioxidative, Antihyaluronidase and Antityrosinase activities of some constituents from the aerial part of Piper elongatum VAHL. Food Sci. Technol. Res. 9(2):197-201. https://doi.org/10.3136/fstr.9.197
  4. Cho, J. Y., G. J. Choi, S. W. Lee, H. Lim, K. S. Jang, C. H. Lim, K. Y. Cho and J. C. Kim (2006) In vivo antifungal activity against various plant pathogenic fungi of curcuminoids isolated from Curcuma longa L. rhizomes. Plant Pathology J. 22:94-96. https://doi.org/10.5423/PPJ.2006.22.1.094
  5. Gudej, J. and P. Czapski (2009) Components of the petroleum ether and chloroform extracts of Chrysosplenium alternifolium. Chem. Nat. Comp. 45:717-719. https://doi.org/10.1007/s10600-009-9422-y
  6. Hossain, M. M., N. Paul, M. H. Sohrab and E. Rahman (2001) Antibacterial activity of Vitex trifolia. Fitoterapia 72(6):695-167. https://doi.org/10.1016/S0367-326X(01)00304-5
  7. Isao, K., I. Masaaki, O. Yoshiko, F. Tamayo and K. Nobusuke (1988) Iridoid and phenolic glucoside from Vitex Rotundifolia. Phytochemistry 28(2):611-612.
  8. Jaber, S. M., S. H. Mohammed, A. Mohammed, M. M. H. Alyahya, A. S. Amir and S. E. Farouk (1988) Flavonoids and coumarins from three Saudi Arabian Compositae Species. Int. J. Crude Drug Res. 26(2):181-184. https://doi.org/10.3109/13880208809053916
  9. Jane, R. H., C. Mary, L. M. D. Neil, J. H. Belinda and A. R. J. Graham (2003) Semisynthetic preparation of amentoflavone: A negative modulator at GABA receptors. Bioorg. Med. Chem. Lett. 13:2281-2284. https://doi.org/10.1016/S0960-894X(03)00434-7
  10. Kang, S. S. and J. S. Kim (1994) Phytochemical Analysis of Viticis Fructus. Korean J. Pharmacogn. 98:214-220.
  11. Kim, J. B. (2005) Pathogen, insect and weed control effects of secondary metabolites from plants. J. Korean Soc. Appl. Biol. Chem. 48:1-15.
  12. Kim, J. C., G. J. Choi, J. H. Park, H. T. Kim and K. Y. Cho (2001) Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Manag. Sci. 57:554-559. https://doi.org/10.1002/ps.318
  13. Kim, J. S. (2003) Development of biopesticide using higher plant-derived natural products. Korea Research Institute of Chemical Technology. 1-10:75-97.
  14. Lee, Y. S., B. D. Choi, E. Y. Joo, S. R. Shin (2009) Antioxidative activities and tyrosinase inhibition ability in various extracts of the Vitex rotundifolia seeds. Korean J. Food Preserv. 16:101-108.
  15. Long, Z. L., M. H. James (2010) Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat). Food Chem. 120:319-326. https://doi.org/10.1016/j.foodchem.2009.09.083
  16. Nurgüun, K. S. Bilge (2010) Two major flavonoids from the fruits of Vitex Agnus-castus L.. Turk J. Pharm. Sci. 7(2):121-124.
  17. Oerke, E. C., H. W. Dehne, F. Schonbeck and A. Weber (1994) Crop production and crop protection: Estimated losses in major food and cash crops. Elsevier, Amsterdam.
  18. Ono, M., H. Sawamura, Y. Ito and K. Mizuki (2000) Diterpenoids from the fruits of Vitex trifolia. Phytochemistry. 55(8):873-877. https://doi.org/10.1016/S0031-9422(00)00214-4
  19. Park, J. H. and C. K. Lee (2000) The Encyclopedia of Medicinal Plants. Shinilbooks. 183-184, 248-249.
  20. Parvinder, P. S., A. Q. Naveed, S. Syed and D. R. Mahendhar (2009) Regio-selective acylation of biologically important iridoid glycosides by Candida antarctica lipase. J. Mol. Cat. 51(1):49-53.
  21. Xin, Y H., Q. Y. Zhang and B. K. Huang (2006) Study on chemical constituents in fruits of Vitex trifolia L. var. simplicifolia Cham. Arch. Pharm. Res. 29:747-749.