DOI QR코드

DOI QR Code

Bioalcohol Production with Microalgae, Microcystis aeruginosa

미세조류 Microcystis aeruginosa로부터 바이오 알콜의 생산

  • Kim, Jong Deog (Research center on Anti-Obesity and Health Care (RCAOHC), Chonnam National University) ;
  • Chae, Go Woon (Marine Future Resources Development Agency (MaFuRDA), Chonnam National University) ;
  • Seo, Hyo Jin (Marine Future Resources Development Agency (MaFuRDA), Chonnam National University) ;
  • Chaudhary, Narendra (Marine Future Resources Development Agency (MaFuRDA), Chonnam National University) ;
  • Yoon, Yang Ho (Marine Future Resources Development Agency (MaFuRDA), Chonnam National University) ;
  • Shin, Tai Sun (Research center on Anti-Obesity and Health Care (RCAOHC), Chonnam National University) ;
  • Kim, Min Yong (Research center on Anti-Obesity and Health Care (RCAOHC), Chonnam National University)
  • Received : 2012.11.28
  • Accepted : 2012.12.24
  • Published : 2012.12.31

Abstract

The microalgae, Microcystis aeruginosa are able to proliferate in a wide range of freshwater ecosystem. M. aeruginosa was cultivated in 25 L and 240 L race-way reactor containing modified medium with added urea 0.2 g/L, increased $Fe^{+2}$, and decreased $Ca^{+2}$ion compared to BG11 medium. Sugar contents of M. aeruginosa grown in BG11 medium, and modified medium were 120 mg/mL and 140 mg/mL respectively. Fermentation was conducted with the extract of M. aeruginosa at $30^{\circ}C$ for 30 h, using Saccharomyces cerevisiae (Sc), Pichia stipitis (Ps), Zymomonas mobilis (Zm), and mixed-culture of these strains (Sc + Ps + Zm). Pichia stipitis (0.7%) was found to be more suitable for producing bioalcohol from M. aeruginosa extract than other strains of Saccharomyces cerevisiae (0.45%) and Zymomonas mobilis (0.61%), while mixed-cultured of these strains showed higest productivity by 1.75%. Biomass of M. aeruginosa contains the potency to be the most renewable resource for bioalcohol fermentation.

Keywords

References

  1. Mehdi, D., H. Schraft, and W. Qin (2009) Fungal bioconversion of lignocellulosic residues: opportunities & perspectives. Int. J. Biol. Sci. 5: 578-595.
  2. Potter, D., Van-Goethem, and F. Schutte (2010) Biofuel resources: lignocellulose and algae. Nature Educ. 3: 14.
  3. Chandel, A. K., E. S. Chan, R. Rudravaram, M. L. Narasu, L. V. Rao, and P. Ravindra (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol. Mol. Biol. Rev. 2: 014-032.
  4. Schenk, P. M. and R. Skye (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res. 1: 20-43. https://doi.org/10.1007/s12155-008-9008-8
  5. Brennan, L. and P. Owende (2010) Biofuels from microalgaea review of technologies for production, processing, and extractions of biofuelsand co-products. Renew. Sustain. Energy Rev. 14: 557-577. https://doi.org/10.1016/j.rser.2009.10.009
  6. AOAC (1995) Official Methods of Analysis. 15th ed., pp. 858. Association of Official Analytical Chemists, Washington, DC.
  7. Edwards, A. H. (1954) The semi-micro Kjeldahl method for the determination of nitrogen in coal. J. App. Chem. 4: 330-340.
  8. Amza, T., I. Amadou, M. T. Kamara, K. Zhu, and H. Zhou (2010) Chemical and nutrient analysis of gingerbread plum (neocarya macrophylla) seeds. Adv. J. Food Sci. Technol. 2: 191-195.
  9. Chaplin, M. F. and J. F. Kennedy (1994) Carbohydrate Analysis: A Practical Approach. 2nd ed., pp. 74-76. Oxford University Press, Oxford, New York.
  10. Kim, H. Y., E. Kim, D. H. Kim, M. J. Oh, and T. S. Shin (2009) The nutritional components of olive flounder (Paralichthys olivaceus) fed diets with Yuza (Citrus junos sieb ex tanaka). Kor. J. Fish Aquat. Sci. 42: 215-223. https://doi.org/10.5657/kfas.2009.42.3.215
  11. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  12. Sumbhate, S. V., S. Nayak, D. Goupale, A. Tiwari, and R. S. Jadon (2012) Colorimetric method for the estimation of ethanol in alcoholic drinks. J. Anal. Tech. 1: 1-6.
  13. Iverson, S. J., S. L. C. Lang, and M. H. Cooper (2011) Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36: 1283-1287.
  14. AOAC (1977) Official Method. Free Fatty Acids. Association of Official Analytical Chemists, Washington, DC, Ca 5a-40.
  15. Toivola, A., D. Yarrow, E. V. Bosch, J. P. Dijken, and A. A. Scheffersi (1984) Alcoholic fermentation of D-Xylose by yeasts. Appl. Environ. Microbiol. 47: 1221-1223.
  16. Slininger, P. J., R. J. Bothast, J. E. Vancauwenberge, and C. P. Kurtzman (1982) Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnol. Bioeng. 24: 371-384. https://doi.org/10.1002/bit.260240210
  17. Gong, C. S., L. F. Chen, M. C. Flickinger, L. C. Chiang, and G. T. Tsao (1981) Production of ethanol from D-xylose by using D-xylose isomerase and yeasts. Appl. Environ. Microbiol. 41: 430-436.
  18. Seiya, W., S. Piyanart, and K. Makino (2008) Metabolic fate of L-lactaldehyde derived from an alternative L-rhamnose pathway. FEBS J. 275: 5139-5149. https://doi.org/10.1111/j.1742-4658.2008.06645.x
  19. Antonius J. A. van Maris, A. Derek, E. Bellissimi, J. Brink, M. Kuyper, M. A. H. Luttik, H. W. Wisselink, W. A. Scheffers, J. P. van Dijken, and J. T. Pron (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek 90: 391-418. https://doi.org/10.1007/s10482-006-9085-7
  20. Delgenes, J. P., R. Moletta, and J. M. Navarro (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme and Microbial Technology 19: 220-225. https://doi.org/10.1016/0141-0229(95)00237-5
  21. Twerdochlib, A. L., F. O. Pedrosa, S. Funayama, and L. U. Rigo (1994) L-rhamnose metabolism in Pichia stipitis and Debaryomyces polymorphus. Can. J. Microbiol. 40: 896-902. https://doi.org/10.1139/m94-144
  22. Preez, J. C., B. van Driessel, and B.A. Prior (1989) D-Xylose fermentation by Candida shehatae and Pichia stipitis at low dissolved oxygen levels in fed-batch cultures. Biotechnol. Lett. 2: 131-136.
  23. Laplace, J. M., J. P. Delgenes, R. Moletta, and J. M. Navarro (1991) Alcoholic fermentation of glucose and xylose by Pichia stipitis, Candida shehatae, Saccharomyces cerevisiae and Zymomonas mobilis: oxygen requirement as a key factor. Appl Microbiol Biotechnol. 36: 158-162. https://doi.org/10.1007/BF00164412
  24. Roy M. and L. Stal (2010) A comparison of fermentation in the cyanobacterium Microcystis PCC7806 grown under a light/dark cycle and continuous light. Euro. J. Phycol. 32: 373-378.

Cited by

  1. Volatile fatty acid recovery by anaerobic fermentation from blue-green algae: Effect of pretreatment 2017, https://doi.org/10.1016/j.biortech.2017.05.076
  2. Enhancing the Feasibility of Microcystis aeruginosa as a Feedstock for Bioethanol Production under the Influence of Various Factors vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/4540826