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Abstract

We in this paper discuss the strong law of large numbers for weighted sums of arrays
of rowwise LN@D random variables by using a new exponential inequality of LZNQD

r.v.'s under suitable conditions and we obtain one of corollary.
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1. Introduction

Let {X,ln > 1} be a sequence of random variables. Hsu and Robbins (1947) introduced
the concept of complete convergence of {X,|n>1}. A sequence {X,Iln=>1} of

random variable converges to a constant ¢ completely if
EP(\X,I,—0\> e) < co for all &> 0.
n=1
If X, —c completely, then the Borel-Cantelli lemma implies that X,—c¢ almost surely,

but the converse is not true in general.

Hu et al.(1989) had obtained the following result in complete convergence and they had
established Theorem A for non identically random variable when no assumption of
independence between rows of the array is made.

Theorem A. Let {X,;/1<i<mn,n=>1} be an array of rowwise independent random

variables with EX,; =0. Suppose that {X,,/l <i<n, n>=1} are uniformly bounded

by some random variable X. If E|X*’ < co for some 1 < p < 2, then

n 1/”z]Xm%O completely as n— co if and only if E|X[*’ < co.

i=1

In this paper, we discuss the strong law of large numbers for weighted sums of arrays
of rowwise LNQ@D random variables. The main purpose of this paper is to extend and
generalize Theorem A to rowwise LNQ@D r.v.'s with a below concepts. We first recall
the definitions and lemmas of negatively associated, negative quadrant dependent and

linearly negative quadrant dependent random variables.

- - + - _
Throughout this paper, a,; = a,,— a,;, where a,, = max(a,;,0), a,; =max(—a,;,0) and

¢ denote positive constant whose values are unimportant and mat vary at different

place.

Definition 1.1 (Joag-Dev & Proschan (1983)). A finite collection of random variables

X, X,, -+, X, is said to be negatively associated(VA) if for every pair of disjoint subset
Ay, Ay of {1,2, -, n},

Cov{f(X;:i€ A,), g(Xj: jE Ay},
whenever f and g are coordinatewise nondecreasing such that this covariance exists.

An infinite sequence {X,,n > 1} is NA if every finite subcollection is NA.

Definition 1.2 (Lehmann (1966)). Two random variables X and Y are said to be



negative quadrant dependent(NQD) if for any z,yER |,
PX<z,Y<y)<PX<z)P(Y<y).

A sequence {X,,n > 1} of random variables is said to be pairwise NQD if X, and X j

are NQD for all i,j =N and i = j.

Lemma 1.1 (Lehmann (1966)). Let X and Y be NQD random variables, then (a)
EXY<EXEY , (b) P(X>2,Y>y)< P(X>2)P(Y>y), and (c¢) If f and ¢ are both

nondecreasing (or both nonincreasing)functions, then f(X) and ¢(Y) are NQD.

Definition 1.3 (Newman (1984)). A sequence {X,,n = 1} of random variables is said

to be linearly negative quadrant dependent (ZLNQ@D) if for any disjoint subsets
A,BC 7" and positive r)'s,

Y rX, and Erij are N@QD.
kEA jeB =

Lemma 1.2. Let {X,,n > 1} be a sequence of LNQD random variables with EX, =0

for each n > 1, then for any ¢> 0,

n

n 2 -
n — 2o
et;: X, X, 5 £§: | EXGe

I
S
I
4y}

Proof. Noticing that ¢tX, and Z X; are LNQD, we know by Definition 1.3, ¢ and

j=i+1
12 X;
e’ =" are also N@D for i=1,2,---,n—1. We will prove the first inequality by
mathematical induction that

DI S

i=1
First, we observe that
Eet(X1+X2) < EetXlEeth

2
= HEetX’i ,

=1
where the inequality follows from Lemma 1.1. Thus (1.2) is true for ¢ =2. Assume now

that the statement is true for i =%k . We will show that it is true for ¢ =k-+1.
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Next, we will prove the second inequality that

3 21X,
*EEX;(” -
25

ﬁEetX’ < e

i=1

. 1
For all z€R, taking e" < 1+ z+ ExQem and EX,= 0 , we have

Be'M < 1+ tEX,+ %tzEX

2 tlX|

i €

IA

4

1+ %tzEX»ZeﬂX’l

1 #x)
EﬁEXfe

e , by 1+2 < e”.

IA

Thus, we get that

I < e 2

i=1
Newman(1984) introduced the concepts of LNQ@D r.v.'s. Many authors derived several
important properties about LNQ@D r.v.s and also discussed some applications in several
areas(see Newman(1984), Cai and Roussas(1997), Wang and Zhang(2006), Ko et al.(2007),
Wang et al.(2010) among others). The studying of limit theorems for ZNQD r.v.s is of
interest, since LNQD rwv.s are much weaker than independent and NA r.v.s.
Throughout this paper, a= O(b) means that there exists some C>0 such that
a< C'b.



2. Main results

Theorem 2.1. Let {X,,/l1<i<mn, n>=1} be a sequence of rowwise LN@D random

ni

variables such that EX,;=0. Assume that {a,|l <i<mn,n>1} is an array of real

numbers satisfying

sup; la,; | = o(1/log n).

If EX2

nt

< oo and Ea

i=1

0(1/log n), then

ni

M in'P IZamX|>s < oo for all e>0 and a >0 .

ni
n=1 i=1

Proof. Since a,; =a,,— a,;, it suffices to show that
Zn”P |ZamX | > ¢) < oo for any £>0 (2.1)
n=1
Zn |Eame\ > ¢) < oo for any £>0 (2.2)

n=1 1=1

Since the proof of (2.2) is similar to (2.1), we prove only (2.1). To prove (2.1), we need

only to prove that

En ZaX >¢) < oo for any >0 (2.3)

ni<ini
n=1

MNnP(DalX,, <—e) < oo for any £>0 (2.4)

n=1 1=1

We first prove (2.3). By the definition of LNQ@D random variables we know that
{a X, 11 <i<mn,n=>1} is still an array of rowwise LZNQD random variables.

Thus using Lemma 1.2, we obtain that for ¢ = log n/e,
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= ) e
M P(YalX, > )= Minte e
n=1 i=1 n=1
n
o 2 +32
< Z a—1 t/27;<a”l) E:X2 tlay X, |
= n e ni €

a— le(log n)?/e%(1)(log n)elog n/e o(1)/logn

I
NgEN
3

(o]
E ne 160(1)logn/eze"m

IA

[ee]

< Enafleclogn
n=1
(o]

< Zna+( 1<OO
n=1

provided a+c< 0. Thus (2.3) is provided. By replacing X,; by — X,;, from the above

statement and noticing {a,,(—X,;)ll <i<n, n>1} is still an array of rowwise

ni
LNQ@D random variables, we know that
E"QP(ZCL:;:XM <—¢)< oo for any &> 0.
n=1 i=1

Hence, the result follows by (2.3) and (2.4). The proof is complete.

Theorem 2.2. Suppose that p>0 and let {X,;/1 <i<mn,n=>1} be a sequence of
rowwise LNQ@D random variables. Suppose that there is a, X such that P(|X,;|> z)

= 01)P(|1X|>2x) for all i, n and z > 0. Assume that {a |1 <i<n,n>1} is an

array of real numbers satisfying
(a) max, - ; -, la,l= On V"), (b)Zam o(1/log n).
1=1
If FIX*" < oo, then
ZP EamX, >¢e)< oo for any e> 0.
n=1 1=1

Proof. Since a,; = a,

i — Qni, 1t suffices to show that
3 P(] Ea,mX,,,|> g) < oo for any >0, (2.5)
n=1 i=1
Z Izame\ <e)< oo for any &> 0. (2.6)

= 1=1

We prove only (2.5), the proof of (2.6) is similar. To prove (2.5), we need only prove
that



ZP Zaan >¢e) < oo for any &> 0,

n=1 i=1

Co n
EP(EGI,:X”,;:<*€) < oo for any e< 0.
n=1 i=1

Without loss of generality, we can assume that 0 < a;- < n]/p, forall 1<i<n, n>1

and let ¢ be a constants such that 0 <p<¢<4¢/3<2 and a=1/p—1/q for a > 0. Let

n

Natx,, = &) c Ul X, 1(1X,,| < n'/">e/2)| J(there exists i such that a,X,, > e/2
i=1 i=1

for some i, 1 <4< n)J(X,, > n' X, > n'/? for at least two different values of
ihj,1<i<j<n).
Then

n=1 1=1 nfl 7*1

+ ZP UamX, > e/2)+ ZP( U X, >n"%X,,>n')

n=1 i=1 n=1 1=i<j=<n

=L+L+.

To prove 1, we first define that

Y, = X, I(1X,,| < nV/)+n'0(x,, > n")—n"0(X,, <—n').

Then

Ea’me] |X |< nl/q)
i=1

=YX, (Y,,— EY,,; “qzam I(x,, > n"")— P(Xx,, >n"9)
i=1

ni
i=1

Yol (X, <—n'") - P(X,, <—n'1)) +ZamEX 11X, < n'9)

i=1 i=1
= L+L+L+1.

As to I, we consider two cases of (a) p>1 and 0<p<1, and note that

{af | (V,,—FY,)I1<i<n,n>1} is still an array of rowwise LNQD random
variables by definition and la,,(V,,— FY,;)| < 2n~°
(a) when p > 1, note that
ElY, " < BIX,PIX,|<n"")+n"P(IX,,| > n'/)
< EIXPI(IX| < nV)+n?1P(1X] > n'/7)
<2E|XPP< o
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which implies that £|Y,.|*> < co since F|X[** < co implies E|X|* < 0.

ni

Hence, by using Lemma 1.2, we can obtain that Z P Ea

n=1 1=1

(Y,,—EY,,)>¢e)< co.

ni n/ ni ni

(b) When 0 < p <1, taking t=n"/2, we get that

L= P(Ya,, (Y, —EY,)>e¢)

ni
i=1

- ﬂtH ta,(Y,;— EY,,)
i=1

tZ/QE (”L)zEYri H’\UI(Y,FEYM
—et i=
e &€ e 1

IA

y —2/pEX, 11X, ] < n')+ n?1P(1X,; | > n'/1)e"
cnzaz v
i=1

IN
[

(&
e*eteCn(Z/pr/q) =20 (1 4 20wy tn™

1-2/q+1-2p/
< *C'I’l" on /a Pla
e (&

Which is summable since o >0 and 0 < p < ¢< 4¢/3 <2 implies that 1—2/¢< 0 and
1—2p/q< 0. Hence, by (a) and (b), for all 0 <p< 2.

ZP Zaan —FY,)>¢e) < o,

n=1 i=1

As to L, let Z,, =n"%! (X, > n'")— P(X,, >n'") .

Then Z,; is still an array of rowwise LN@D random variables by definition and
|Z,; | <n”“ and

n?1(a))?P(X,,; > n'")+ P(X,; > n'/")

cn2/q7f 2/pE X ‘217/”217/(1 ]

IA

IA

So, we get that

n
— et 12,
L < e “[]Ee

i=1

n
Wt

—et i=1

e e

IA

—é&n

nzlx/z icn'z/q—z/pE X ‘2/7121»/467."("
e e i=1

IA

o, 1-2p/q
—é&enn
< e

Which is summable since a >0 and 1—2p/q < 0. Hence



ZP Wzam I(X,, >n")—P(X,, >n"1))>e) < .

n=1 i=1
As to I, the proof of Z; is similar to f.

Finally, proof of rest £, I, and £ it follows the proof of paper of Baek(2009)

Corollary 2.1. Suppose that {X ll1<i<n,n=> 1} be a sequence of rowwise LNQD
random variables such that P(|X,|> z)= O(1)P(X|>=2z) and let EX,;=0 and
FElX|"< c. Then

ZX,”/TLI/Q (logn)'?*7 -0 as n—oo for any y> 0.
=1

Proof. If p=2 and a,,=n "?(log)”/?*?, forl <i<n,n=>=1, we can obtain the

result of Corollary 2.1.
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