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Abstract

We in this paper discuss the strong law of large numbers for weighted sums of arrays

of rowwise  random variables by using a new exponential inequality of 

r.v.'s under suitable conditions and we obtain one of corollary.
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1. Introduction

Let  ≥  be a sequence of random variables. Hsu and Robbins (1947) introduced

the concept of complete convergence of    ≥  . A sequence  ≥  of

random variable converges to a constant c completely if


  

∞

     ∞ for all   

If → completely, then the Borel-Cantelli lemma implies that → almost surely,

but the converse is not true in general.

Hu et al.(1989) had obtained the following result in complete convergence and they had

established Theorem A for non identically random variable when no assumption of

independence between rows of the array is made.

Theorem A. Let    ≤  ≤  ≥  be an array of rowwise independent random

variables with     . Suppose that   ≤  ≤  ≥  are uniformly bounded

by some random variable  . If   ∞ for some  ≤ ≤  , then

 
  



→ completely as →∞ if and only if  
  ∞ .

In this paper, we discuss the strong law of large numbers for weighted sums of arrays

of rowwise  random variables. The main purpose of this paper is to extend and

generalize Theorem A to rowwise  r.v.'s with a below concepts. We first recall

the definitions and lemmas of negatively associated, negative quadrant dependent and

linearly negative quadrant dependent random variables.

Throughout this paper,   
  

 , where 
  max     

  max    and

 denote positive constant whose values are unimportant and mat vary at different

place.

Definition 1.1 (Joag-Dev & Proschan (1983)). A finite collection of random variables

 …, is said to be negatively associated( ) if for every pair of disjoint subset

  of   ⋯  ,

   ∈      ∈  

whenever  and  are coordinatewise nondecreasing such that this covariance exists.

An infinite sequence   ≥  is  if every finite subcollection is  .

Definition 1.2 (Lehmann (1966)). Two random variables  and  are said to be
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negative quadrant dependent( ) if for any   ∈ ,

    ≤      .

A sequence   ≥  of random variables is said to be pairwise  if   and 

are  for all    ∈ and ≠  .

Lemma 1.1 (Lehmann (1966)). Let  and  be  random variables, then (a)

 ≤  , (b)      ≤     , and (c) If  and  are both

nondecreasing (or both nonincreasing)functions, then   and   are  .

Definition 1.3 (Newman (1984)). A sequence  ≥  of random variables is said

to be linearly negative quadrant dependent ( ) if for any disjoint subsets

 ⊂  and positive ′ ,


∈

 and 
∈

 are  .

Lemma 1.2. Let   ≥  be a sequence of  random variables with   

for each ≥  , then for any   ,



  



 

≤
  




  ≤ 






  



 




.

Proof. Noticing that   and 
   



 are  , we know by Definition 1.3, 
  and


 
  





are also  for   ⋯  . We will prove the first inequality by

mathematical induction that



  





≤
 




 (1.2)

First, we observe that


    ≤ 





  




 i ,

where the inequality follows from Lemma 1.1. Thus (1.2) is true for    . Assume now

that the statement is true for    . We will show that it is true for     .
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≤ 

  



 


 

≤ 
  




 

 

 
  

 


  

      

Next, we will prove the second inequality that


  




 ≤ 






  



 




.

For all ∈ , taking ≤   


   and    , we have


  ≤    


 

 
  

≤  


 


  

≤ 



 


 

 by  ≤ 

Thus, we get that


  




 ≤ 






  



 


 

.

Newman(1984) introduced the concepts of  r.v.’s. Many authors derived several

important properties about  r.v.’s and also discussed some applications in several

areas(see Newman(1984), Cai and Roussas(1997), Wang and Zhang(2006), Ko et al.(2007),

Wang et al.(2010) among others). The studying of limit theorems for  r.v.’s is of

interest, since  r.v.’s are much weaker than independent and  r.v.’s.

Throughout this paper,    means that there exists some    such that

≤  ′
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2. Main results

Theorem 2.1. Let   ≤  ≤  ≥  be a sequence of rowwise  random

variables such that    . Assume that  ≤  ≤  ≥  is an array of real

numbers satisfying

sup    log 

If 
  ∞ and 

  




  log , then


  

∞

  
  



     ∞ for all    and  ≥  

Proof. Since   
  

 , it suffices to show that


  

∞

 
  




    ∞  for any    (2.1)


  

∞

 
  




     ∞  for any    (2.2)

Since the proof of (2.2) is similar to (2.1), we prove only (2.1). To prove (2.1), we need

only to prove that


  

∞


  




    ∞  for any    (2.3)


  

∞


  




    ∞  for any    (2.4)

We first prove (2.3). By the definition of  random variables we know that


  ≤  ≤  ≥  is still an array of rowwise  random variables.

Thus using Lemma 1.2, we obtain that for   log ,
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∞


  




  ≤ 

  

∞

 

  




 

≤ 
  

∞

 


  




 


 

 
  

≤ 
  

∞

 log     log  log    log 

≤ 
  

∞

 
 log  

≤ 
  

∞

  log

≤ 
  

∞

    ∞

provided     Thus (2.3) is provided. By replacing  by  from the above

statement and noticing 
    ≤  ≤  ≥  is still an array of rowwise

 random variables, we know that


  

∞


  




   ∞ for any   

Hence, the result follows by (2.3) and (2.4). The proof is complete.

Theorem 2.2. Suppose that    and let   ≤  ≤  ≥  be a sequence of

rowwise  random variables. Suppose that there is a,  such that     

      for all  ,  and  ≥  . Assume that   ≤  ≤  ≥  is an

array of real numbers satisfying

(a) max ≤ ≤         (b)
  




  log .

If     ∞ , then


  

∞


  



    ∞ for any    .

Proof. Since   
  

 , it suffices to show that


  

∞

  
  




     ∞  for any    (2.5)


  

∞


  




     ∞  for any    (2.6)

We prove only (2.5), the proof of (2.6) is similar. To prove (2.5), we need only prove

that
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∞


  




     ∞ for any   


  

∞


  




     ∞ for any   

Without loss of generality, we can assume that   
 ≤  , for all  ≤  ≤, ≥ 

and let  be a constants such that          and    for    Let


  




 ≥  ⊂ 

  




   ≤  (there exists  such that 

  

for some   ≤  ≤       for at least two different values of

   ≤    ≤ 

Then

   
  

∞


  




 ≥  ≤ 

  

∞


  




   ≤   

                          
  

∞


  




   

  

∞

 
 ≤    ≤ 

    

                             

To prove  , we first define that

      ≤      

Then

  
  




    ≤ 

        
  




  

  




        

         
  




     

  




   ≤ 

               

As to  , we consider two cases of (a)  ≥  and      , and note that


     ≤  ≤  ≥  is still an array of rowwise  random

variables by definition and  
   ≤  

(a) when  ≥  , note that

  
 ≤   

    ≤      

   ≤      ≤      

                        ≤    ∞
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which implies that   
  ∞ since     ∞ implies     ∞

Hence, by using Lemma  , we can obtain that 
  

∞


  




   ∞

(b) When      , taking    , we get that

          
  




   

                                  ≤  
  




 

      

                                  ≤  


  




  

 
 

 

                                  ≤  


  




 

  ≤        


                                  ≤  
         

                                  ≤ 
 


    

Which is summable since    and          implies that     and

    Hence, by (a) and (b), for all      .


  

∞


  




    ∞ .

As to  , let   
       

Then  is still an array of rowwise  random variables by definition and

  ≤   and

  
 ≤ 

     

                           ≤     

So, we get that

 ≤  
  






                                    ≤  


  




 

  

                                    ≤ 
 




  



    

                                    ≤ 
  

→ 

Which is summable since    and     . Hence
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∞


  




            ∞

As to  , the proof of  is similar to  .

Finally, proof of rest   and  it follows the proof of paper of Baek(2009)

Corollary 2.1. Suppose that  
  ≤  ≤  ≥  be a sequence of rowwise 

random variables such that      and let    and

   ∞ . Then

 
  




log   →  as →∞ for any    .

Proof. If    and     log    for  ≤  ≤  ≥  we can obtain the

result of Corollary 2.1.
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