초등학교 4,5,6학년 영재학급 학생의 패턴 일반화를 위한 해결 전략 비교

A Comparison of Mathematically Gifted Students' Solution Strategies of Generalizing Geometric Patterns

  • 최병훈 (경북대학교사범대학부설초등학교) ;
  • 방정숙 (한국교원대학교)
  • 투고 : 2012.09.28
  • 심사 : 2012.11.13
  • 발행 : 2012.11.30

초록

본 연구의 목적은 학년에 따라 수학영재학급 학생들이 패턴 일반화 과정에서 사용하는 전략의 차이와 일반화 표현 방법을 알아보는 것이다. 연구를 위해 단위학교 영재학급 4~6학년 30명을 대상으로 도형과 관련한 4개의 과제에 대한 해결 전략을 살펴보았다. 연구결과, 일반화를 시작하는 단계의 문항에서 학생들은 패턴의 앞 뒤 수를 이용하여 문제를 해결하는 순환적인 관계인식 전략으로 문제를 해결하는 경우가 많았고 일반화를 형성하는 단계의 문항에서는 학년이 높아질수록 주어진 정보로 규칙이나 식을 만들어 해결하려는 상황적 인식 전략을 사용한다는 것을 알 수 있었다. 그러나 난이수준이 높은 문항일수록 학생들은 그리거나 뛰어 세기 등의 구체화를 통한 인식 전략이나 순환적인 관계 인식 전략을 선호하는 경향이 있었다. 일반화를 명확하게 하는 단계의 문항에서 학생들은 패턴을 언어로 기술하는 경향이 많았으며 높은 학년일수록 패턴을 대수적 표현(기호 또는 수식)으로 기술하려고 하였다. 정당화 단계의 문항에서 학년이 높을수록 일반화된 식으로 표현하는 비율이 높았다. 연구 결과를 통해 패턴을 찾는 과제에서 영재학급 학생들이 일반화를 하기 위한 전략의 차이를 알고 지도하는데 도움을 줄 수 있는 시사점을 제공하고자 한다.

The main purpose of this study was to explore the process of generalization generated by mathematically gifted students. Specifically, this study probed how fourth, fifth, and sixth graders might generalize geometric patterns and represent such generalization. The subjects of this study were a total of 30 students from gifted classes of one elementary school in Korea. The results of this study showed that on the question of the launch stage, students used a lot of recursive strategies that built mainly on a few specific numbers in the given pattern in order to decide the number of successive differences. On the question of the towards a working generalization stage, however, upper graders tend to use a contextual strategy of looking for a pattern or making an equation based on the given information. The more difficult task, more students used recursive strategies or concrete strategies such as drawing or skip-counting. On the question of the towards an explicit generalization stage, students tended to describe patterns linguistically. However, upper graders used more frequently algebraic representations (symbols or formulas) than lower graders did. This tendency was consistent with regard to the question of the towards a justification stage. This result implies that mathematically gifted students use similar strategies in the process of generalizing a geometric pattern but upper graders prefer to use algebraic representations to demonstrate their thinking process more concisely. As this study examines the strategies students use to generalize a geometric pattern, it can provoke discussion on what kinds of prompts may be useful to promote a generalization ability of gifted students and what sorts of teaching strategies are possible to move from linguistic representations to algebraic representations.

키워드