
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012 2827

Copyright © 2012 KSII

A preliminary version of this paper appeared in the ICONI (International Conference on Internet) 2011, December

15-19, 2011. This research was supported by the MKE (Ministry of Knowledge Economy), Korea, under the ITRC

(Information Technology Research Center) support program supervised by the NIPA (National IT Industry

Promotion Agency) [NIPA-2012-H0301-12-3006].

http://dx.doi.org/10.3837/tiis.2012.10.005

A Hadoop-based Multimedia Transcoding
System for Processing Social Media in the

PaaS Platform of SMCCSE

Myoungjin Kim
1
, Seungho Han

1
, Yun Cui

1
, Hanku Lee

1,*
 and Changsung Jeong

2

1 Department of Internet and Multimedia Engineering, Konkuk University

Gwangjin-gu, Seoul 143-701 – Republic of Korea
2 Department of Electrical Engineering, Korea University

Seongbuk-gu, Seoul 136-713 – Republic of Korea

[e-mail: tough105, shhan87, ilycy, hlee@konkuk.ac.kr, csjeong@korea.ac.kr]

*Corresponding author: Hanku Lee

Received April 9, 2012; revised July 9, 2012; accepted August 16, 2012;

published November 30, 2012

Abstract

Previously, we described a social media cloud computing service environment (SMCCSE).

This SMCCSE supports the development of social networking services (SNSs) that include

audio, image, and video formats. A social media cloud computing PaaS platform, a core

component in a SMCCSE, processes large amounts of social media in a parallel and

distributed manner for supporting a reliable SNS. Here, we propose a Hadoop-based

multimedia system for image and video transcoding processing, necessary functions of our

PaaS platform. Our system consists of two modules, including an image transcoding module

and a video transcoding module. We also design and implement the system by using a

MapReduce framework running on a Hadoop Distributed File System (HDFS) and the media

processing libraries Xuggler and JAI. In this way, our system exponentially reduces the

encoding time for transcoding large amounts of image and video files into specific formats

depending on user-requested options (such as resolution, bit rate, and frame rate). In order to

evaluate system performance, we measure the total image and video transcoding time for

image and video data sets, respectively, under various experimental conditions. In addition,

we compare the video transcoding performance of our cloud-based approach with that of the

traditional frame-level parallel processing-based approach. Based on experiments performed

on a 28-node cluster, the proposed Hadoop-based multimedia transcoding system delivers

excellent speed and quality.

Keywords: Hadoop, mapreduce, multimedia transcoding, cloud computing, paas

2828 Kim et al.: A Hadoop-based Multimedia Transcoding System for Processing Social Media

1. Introduction

In these days of rapid technological change, cloud computing [20][22][24][31][32] has

achieved remarkable interest from researchers and the IT industry for providing a flexible

dynamic IT infrastructure, QoS guaranteed computing environments, and configurable

software services [11]. Due to these advantages, many service providers who release Social

Network Services (SNS) [8][12][14] utilize cloud computing in order to reduce maintenance

costs of building and expanding computing resources for processing large amounts of social

media data, such as video, image, and text formats.

In order to develop a SNS based on large amounts of social media, scalable mass storage for

social media data created daily by users is needed. For example, the amount of data generated

by Twitter every day reaches up to 7TB. Facebook also produces around 10TB because media

files have recently changed from low capacity, low definition to high capacity and high

definition formats. In addition to transferring social media data to end-users, media

transcoding approaches [3][7][9] are required for delivering a variety of video data in multiple

formats to heterogeneous mobile devices. Moreover, distributed and parallel data processing

models such as Hadoop [2][13], Google’s MapReduce model [1][21] and the Message Passing

Interface (MPI) standard [4] are also needed for data processing in a parallel and distributed

computing environment.

In an earlier publication [5], we described the new concept of a Social Media Cloud

Computing Service Environment (SMCCSE) that enables cloud computing technologies,

approaches in the intensive use of computing resources, and cloud services for developing

social media-based SNS. In particular, we focused on designing a social media PaaS platform

as the core platform of our SMCCSE in [17]. The main role of the social media PaaS platform

is to provide a distributed and parallel processing system for media transcoding functions and

delivering social media, including video and audio files, to heterogeneous devices such as

smart phones, personal computers, televisions, and smart pads. This platform is composed of

three parts: A social media data analysis platform for large scalable data analysis; a cloud

distributed and parallel data processing platform for storing, distributing, and processing

social media data; and finally, a cloud infra management platform for managing and

monitoring computing resources.

In this paper, we focus on designing and implementing a Hadoop-based multimedia

transcoding system for delivering image and video files in a SNS by adopting a social media

PaaS platform in SMCCSE. Our transcoding system consists of two modules, including a

video transcoding module for converting video data and an image transcoding module for

converting image data. Our video transcoding module can transcode a variety of video coding

formats into the MPEG-4 video format. The image transcoding module can transcode large

amounts of image data sets into a specific format.

In the traditional multimedia transcoding approaches, many researchers have focused on

distributed and cluster-based video media approaches, such as those found in [6][15][28] that

reduce processing time and maintenance costs for building a computing resource

infrastructure. However, these approaches focus on procuring computing resources for a video

transcoding process by simply increasing the number of cluster machines in a parallel and

distributed computing environment. In addition, they do not consider load balancing, fault

tolerance and a data replication method to ensure data protection and expedite recovery.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012 2829

Furthermore, there has been limited progress in research related to splitting and merging

policies that are considered significant in distributed transcoding. In order to overcome these

limitations, we apply a cloud computing environment to our Hadoop-based multimedia

transcoding system. Improvements in quality and speed are achieved by adopting Hadoop

Distributed File System (HDFS) [18][29] for storing large amounts of video data created by

numerous users, MapReduce [10] for distributed and parallel processing of video data, and

Xuggler [25] and Java Advanced Imaging (JAI) [27] for media transcoding based on open

source. In addition, our system improves the distributed processing capabilities and simplifies

system design and implementation by incorporating data replication, fault tolerance, load

balancing, file splitting and merging policies provided by Hadoop.

Our paper is organized as follows: in Section 2 we describe the basic idea of cloud

computing, HDFS, MapReduce, and media transcoding approaches. In Section 3, we

introduce the PaaS platform in SMCCSE, describing three sub-platforms in detail. In Section 4,

we propose a Hadoop-based media transcoding system in the PaaS platform. Design and

implementation strategies of our system are provided in Section 5. In Section 6, we discuss the

results of several experiments conducted on our cloud cluster by presenting optimal Hadoop

options suitable for media transcoding; in addition, we compare the transcoding performance

of our Hadoop-based transcoding approach implemented in Java with that of the traditional

frame-based parallel transcoding approach implemented in C and C++. Section 7 comprises

the conclusion and potential future research.

2. Related Work

2.1 Hadoop and MapReduce

Hadoop, inspired by Google’s MapReduce and Google File System [33], is a software

framework that supports data-intensive distributed applications handling thousands of nodes

and petabytes of data. It can perform scalable and timely analytical processing of large data

sets to extract useful information. Hadoop consists of two important frameworks: 1) Hadoop

Distributed File System (HDFS), like GFS, is a distributed, scalable and portable file system

written in Java. 2) MapReduce is the first framework developed by Google for processing

large data sets.

The MapReduce framework provides a specific programming model and a run-time

system for processing and creating large data sets amenable to various real-world tasks [30].

This framework also handles automatic scheduling, communication, and synchronization for

processing huge datasets and it has fault tolerance capability. The MapReduce programming

model is executed in two main steps called mapping and reducing. Mapping and reducing are

defined by mapper and reducer functions. Each phase has a list of key and value pairs as input

and output. In the mapping step, MapReduce receives input data sets and then feeds each data

element to the mapper in the form of key and value pairs. In the reducing step, all the outputs

from the mapper are processed, and the final result is generated by the reducer using the

merging process.

2.2 Media transcoding

The term media transcoding is defined in many publications, such as [23][29]. In [11], to bring

multimedia contents and service to the numerous heterogeneous client devices while retaining

the ability to go mobile, multimedia information must be adapted, that is referred to as media

transcoding technology.

2830 Kim et al.: A Hadoop-based Multimedia Transcoding System for Processing Social Media

Fig. 1 illustrates the architecture of a legacy transcoding system. First, the client requests a

transcoding function from a transcoding server. The transcoding sever reads the original media

data from the media server, proceeds to transcode the data depending on user requested

resolution, bit-rate, and frame rate. The transcoding server then sends the transcoded media

data to the client [30]. However, this media transcoding processing imposes a heavy burden on

the existing internet infrastructure and computing resources because more recent media files,

such as video and image files have changed to high capacity/high definition.

Fig. 1. The architecture of a legacy transcoding system [30]

Therefore, many researchers apply distributed and parallel computing to media transcoding

methods. Jiani Guo et al. in [15] have proposed a cluster-based multimedia web server. This

team has designed and implemented a media cluster that dynamically generates video units in

order to satisfy the bit rate requested by many clients and has proposed seven load balance

scheduling schemes for the MPEG transcoding service. Y. Sambe et al. in [16] have designed

and implemented a distributed video transcoding system able to transcode a MPEG-2 video

file into diverse video formats with different rates. The main idea behind transcoding a video

file is that the transcoder chunks the MPEG-2 video file into small segments along the time

axis and transcodes them in a parallel and distributed manner.

Zhiqiang et al. in [19] described a cluster-based transcoder that can transcode MPEG-2

format video files into MPEG-4 and H.264 format video files with faster transcoding speed.

This system is composed of a master node and a number of worker nodes. The master node

consists of six threads, a splitter, merger, sender, receiver, scheduler and an audio transcoder.

3. Brief Overview on PaaS Platform of SMCCSE

In this section, we briefly review the Social Media Cloud Computing Service Environment

(SMCCSE), focusing on describing the social media PaaS platform.

3.1 SMCCSE (Social Media Cloud Computing Service Environment)

Our SMCCSE has a multiple service model using cloud computing to support SNSs such as

Twitter and Facebook, social media services such as YouTube, and social game services like

the social network games in Facebook.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012 2831

First, our service model offers social media APIs, a web-based social SDK, and service

delivery platforms for developing the SNS as the form of SaaS. Second, in order to provide

social media data with reliable services to users, this service model also provides a distributed

and parallel data processing platform for storing, distributing, and en/decoding large amounts

of social data (including audio, video, and image formats) as a form of PaaS. Finally, the

service model provides an IaaS based on virtualization in order to reduce the cost associated

with building computing resources, such as servers, storage, and so on. Fig. 2 summarizes this

Social Media Cloud Computing service model.

Here we introduce the SMCCSE architecture. Designing a SMCCSE involves establishing

an environment for supporting the development of SNS, addressing numerous SNSs,

providing approaches for processing large amounts of social media data, and providing a set of

mechanisms to manage the entire infrastructure.

Fig. 2. Social Media Cloud Computing Service model

3.2 PaaS Platform in SMCCSE

The PaaS platform is likely to be the core platform of SMCCSE and IaaS, and provides the

physical computing environment. Fig. 3 shows the whole architecture of the PaaS platform in

SMCCSE.

3.2.1 Social Media Data Analysis Platform

The role of a social media data analysis platform is to analyze social media data including text,

images, audio, and videos and to provide various libraries that perform the functions of

encoding, decoding, transcoding, and transmoding these different formats. In social media

based SNSs, the analysis social media data is one of the most important elements for offering

reliable services to users. In order to recommend and offer social media of specific types to

users, our platform analyzes usage patterns, types, and correlation of social media shared,

created, and published by users in advance. The other key function of a social media data

2832 Kim et al.: A Hadoop-based Multimedia Transcoding System for Processing Social Media

analysis platform is to provide a user friendly interface that conducts the functions of

transcoding and transmoding so that users can easily create, share, and upload social media,

especially image and video content via social media common algorithms libraries.

Fig. 3. Social Media Cloud Computing PaaS Platform

3.2.2 Cloud Distributed and Parallel Data Processing Platform

The main function of a cloud distributed and parallel data processing platform as a core

platform in SMCCSE is to store, distribute, and process large amounts of social media data.

The social media data are then transferred to user devices, such as mobile phones, smart pads,

PCs, TVs, etc. Distributed and parallel data processing system are composed of two systems: a

distributed data system and a distributed parallel processing system. The distributed data

system adopts HDFS for a distributed file system and HBase (Hadoop Database) for a

distributed DB system. In addition, we also select MapReduce as a distributed parallel

programming model.

In practice, this platform carries out functions provided by social media common algorithms

libraries in social media data analysis platforms. First, newly created social media data (text,

images, audio, and video) are stored on HDFS. Stored data is processed in two steps using

MapReduce. In the first step, our platform conducts analysis work for the execution of each

core logic defined by social media APIs in the SaaS platform. For instance, if the SaaS

platform defines a social media API that shows a list of video clips a particular group of users

have seen most, MapReduce analyzes the social media data and returns any result to the social

media API in order to provide the list to requestors. In the second step, encoding, decoding,

transcoding, and transmoding functions are carried out to serve the QoS service to hundreds of

heterogeneous smart devices.

Traditional approaches to media conversion are very time-intensive. However, our platform

has reduced the media conversion time by using enabling cloud computing technologies and

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012 2833

large scalable computing resources in a cloud computing environment. Using the fixed size

policy [26][34], a traditional file splitting technique, the content of a single image is split into

small chunks and stored in HDFS. Each chunk is then encoded in parallel and subsequently

combined into a single file again using the MapReduce programming model. MapReduce

reduces run time for encoding work. The transcoding and transmoding functions are carried

out using the same approach.

3.2.3 Cloud Infra Management Platform

The Cloud Infra Management Platform consists of cloud QoS, Green IDC, and Cloud Infra

Management. Cloud Infra management manages and monitors computing resources that do

not depend on a specific OS or platform. Cloud Infra management includes resource

scheduling, resource information management, resource monitoring, and virtual machine

management functions. These functions are provided on a web service based on Eucalyptus.

4. Hadoop-based Multimedia Transcoding System in PaaS of SMCCSE

Media transcoding is a very important function in the PaaS platform of SMCCSE for

delivering social media content. Hence, we design and implement a Hadoop-based multimedia

transcoding system, including image and video transcoding modules by utilizing the PaaS

platform scheme of SMCCSE.

4.1 Overall System Architecture

The core processing for video and image transcoding is briefly explained as follows: The

proposed system uses HDFS as storage for distributed parallel processing. The extremely large

amount of collected data is automatically distributed in the data nodes of HDFS. For

distributed parallel processing, the proposed system exploits the Hadoop MapReduce

framework. In addition, Xuggler libraries for video resizing and encoding as well as JAI

libraries for image are utilized in Mapper. The Map function processes each chunk of video

data in a distributed and parallel manner. Fig. 4 illustrates the overall architecture of a

Hadoop-based multimedia transcoding system in PaaS platform.

4.2 Hadoop-based Multimedia Transcoding System Architectural Components

Our system is mainly divided into four domains: Video and Image Data Collection Domain

(VIDCD), HDFS-based Splitting and Merging Domain (HbSMD), MapReduce-based

Transcoding Domain (MbTD) and Cloud-based Infrastructure Domain (CbID).

4.2.1 VIDCD

The main contribution of VIDCD is the collection of different types of original encoded video

and image files created by media creators such as SNS providers, media sharing services, and

personal users, and the storage of these files on our local file system. It also collects transcoded

video and image data sets converted to target format files through a transcoding processing

step based on MapReduce in MbTD, and stores them on the local file system. The period for

collecting original encoded video and image data sets can be set by administrators and users

according to a data set size and acquisition time.

4.2.2 HbSMD

The main role of HbSMD, which runs on HDFS, is to split collected original video and image

data sets into blocks of a configured size, and to automatically distribute all blocks over the

cluster. In HbSMD, the default block size is set to 64 MB, but it is changed by administrators

and users to various other values, such as 16 MB, 32 MB, 128 MB, 256 MB, etc. When a block

2834 Kim et al.: A Hadoop-based Multimedia Transcoding System for Processing Social Media

is distributed, it is replicated at three data nodes according to the Hadoop distribution policy,

thus complying with the entire distributed processing procedure and enabling recovery from a

system failure caused by data loss. The other role of HbSMD is to merge blocks transcoded by

transcoders in MbTD into target video and image files, and to transmit them to VIDCD. The

number of block replicas is set to 1, 2, 4, 5, etc.

4.2.3 MbTD

MbTD performs several tasks that transcode distributed blocks in each data node by using a

MapReduce-based transcoding module with Xuggler and JAI. A data node 1 and a transcoder

1 are located in the same physical machine. First, the transcoders implement the decoding step.

Next, the resizing step is implemented if the users and administrators require a change in the

resolution of a video file and an image file. If such a change is not required, the transcoders

skip this step. Finally, the transcoders encode the decoded blocks into a target file based on the

requirements of the user.

4.2.4 CbID

CbID offers infrastructure services in a cloud computing environment via server, storage, CPU,

and network virtualization techniques. Because of the massive storage space and enormous

computing resource requirements of such systems, small service vendors are unable to afford

the cost of building them. When users require logical computing resources to build and

implement this system, CbID automatically deploys a virtualized cluster environment. CbID

allows users to select a specific configuration of memory, CPU, storage, and the number of

clusters. In addition, it provides the easy installation and configuration environment of HDFS

and MapReduce without much effort from the user. In this paper, we present the idea and

concept of CbID; its implementation is not considered.

Fig. 4. Overall Architecture of a Hadoop-based Multimedia Transcoding System in the PaaS platform

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012 2835

5. Design and Implementation

In this section, we discuss several design features of our Hadoop-based multimedia

transcoding system. We describe the design and implementation of MbTD, which is

responsible for image and video data processing through the MapReduce framework. The

image and video transcoding modules are also designed based on the MapReduce framework.

The MapReduce framework provides the FileInputFormat and FileOutputFormat

classes for processing petabyte-scale text data in a parallel and distributed manner. However,

these classes are not suitable for processing media data. Therefore, we designed new classes:

ImageInputFormat, VideoFileInputFormat, ImageOutputFormat, and

VideoFileOutputFormat suitable for performing image and video transcoding

functions within the MapReduce framework. We also discuss implementation issues for

MbTD based on Xuggler and JAI, as described in the previous section.

5.1 Design Strategy

We first discuss the design strategy of our image transcoding module. FileInputFormat

is responsible for transferring stored data in the HDFS to mapper. The module is designed to

read text data line by line. However, since our system deals with media data like images and

video data, rather than text data, we design a new ImageInputFormat class that can read

image data by transforming such data to byte stream form. In addition, the

ImageRecordReader class is designed to read one line record transformed as a byte

stream form from ImageInputFormat and pass it to mapper.

When one line record transfers to mapper, it is composed of a video file name and a byte

stream of the image file as key and value pairs. For FileOutputFormat, the record is in

the same state as for FileInputFormat explained above. Hence, we also design new

ImageOutputFormat and ImageRecordWriter classes that receive key and value

pairs in record form created as a result of mapper and reducer. Subsequently, these classes

output the record in a specified directory. Fig. 5 illustrates four class diagrams for image

conversion function. Although, most MapReduce applications bring a result via mapper

and/or reducer, we only implement mapper in our system since it is unnecessary to reduce a

set of intermediate values using reducer. Moreover, the class ImageResizer using the JAI

libraries is designed to perform a transcoding function by processing key and value pairs in the

mapper phase. Fig. 6 shows ImageConversion with main (), Map, and

ImageResizer class diagrams.

ImageInputFormat class diagram

ImageOutputFormat class diagram

2836 Kim et al.: A Hadoop-based Multimedia Transcoding System for Processing Social Media

ImageRecordReader class diagram

ImageRecordWriter class diagram

Fig. 5. New class diagrams designed for the image conversion function

Fig. 6. ImageConversion, Map, and ImageResizer class diagrams

The design of the video conversion module is very similar to that for image conversion. We

design VideoFileInputFormat and VideoRecordReader receiving a video file

from HDFS as key and value pairs compatible with the MapReduce framework for processing.

We also design VideoFileOutputFormat and VideoRecordWriter classes that

write output data in HDFS. The Resizer, MyVideoListener, and VideoConverter

classes are responsible for processing video transcoding in the video conversion module.

These three classes are designed using Xuggler libraries. Method convertVideo in

VideoConverter transcodes the input video data as a byte stream form according to the

file size and format of the video as set by the users and administrators. Fig. 7 illustrates the

four class diagrams for the image conversion function. Fig. 8 shows Resizer,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012 2837

MyVideoListener, VideoConverter, VideoConversion with main (), and

Map class diagrams.

VideoFileInputFormat class diagram

VideoFileOutputFormat class diagram

VideoRecordReader class diagram

VideoRecordWriter class diagram

Fig. 7. Newly designed class diagrams for video conversion funciton

Resizer class diagram

MyVideoListener class diagram

2838 Kim et al.: A Hadoop-based Multimedia Transcoding System for Processing Social Media

VideoConverter class diagram

VideoConversion and ap class diagram

Fig. 8. Class diagrams for transcoding processing

5.2 Implementation

In this section, we focus on the detailed description of the implementation of MbTD, the

component that plays an important role in our system. MbTD is responsible for the processing

of video data through the MapReduce framework. Fig. 9 shows the detailed MapReduce-based

programming strategy of MbTD.

First, we implement InputFormat that transfers original video data sets stored on HDFS.

The InputFormat plays two significant roles. The first role is to provide information about

the number of map tasks for the MapReduce framework in advance. Therefore, the map tasks

are prescheduled in the MapReduce framework. The second role is to read a record that is

transferred to map () of a map class from the original video datasets. This function is

performed by RecordReader. The RecordReader provided from FileInputFormat

is designed to read one line from a source file and pass it to map ().

Next, we implement Mapper to process each record received from the RecordReader.

Mapper receives a video file name and byte stream of the video file as key and value pairs

from RecordReader. The key and value pairs are processed by map () in a parallel and

distributed manner. This transcoding processing is carried out by the Xuggler and JAI media

libraries. The result of complete processing is transmitted in the form of converted key and

value pairs to OutputFormat.

Finally, we also implement OutputFormat that writes the complete output data

processed by Mapper to HDFS. That is, the OutputFormat rewrites key and value pairs as a

file on HDFS. In this paper, we implemented MbTD, the main component of our system, by

using the implementation strategy explained above.

Fig. 9. The MapReduce-based programming strategy in MbTD

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012 2839

6. Performance Evaluation

In this section, we present the experimental results, describing optimal Hadoop options for

processing image and video files. Moreover, we explain the hardware specifications of our

cloud cluster, image and video data sets used in performance evaluation and the experimental

methods for measuring media transcoding time.

6.1 Experiment Environment

Our performance evaluation is performed on a single enterprise scale cluster that is composed

of 1 master node and 27 computational nodes (data nodes called in HDFS). The only way to

access the cluster is through the master node. Each node running on the Linux OS (Ubuntu

10.04 LTS) is equipped with two Intel Xeon 4 core 2.13 GHz processors with 4 GB registered

ECC DDR memory and 1 TB SATA-2. All nodes are interconnected by a 100 Mbps Ethernet

adapter. We also use Java 1.6.0_23, Hadoop-0.20.2, Xuggler 3.4 for video transcoding and

JAI 1.1.3 for image transcoding. Because the structure of the cluster is homogeneous, it

provides a uniform evaluation environment.

In order to verify the performance for our transcoding functions including image and video

transcoding processing, we use six types of video data sets (Table 1), including several

200MB video files and six types of image data sets, (Table 1) including several approximately

20MB image files.

Table 1. Image and video data sets for performance evaluation

Video data sets

Size of file 1GB 2GB 4GB 8GB 10GB 50GB

Number of video files 5 10 20 40 50 250

Image data sets

Size of file 1GB 2GB 4GB 8GB 10GB 50GB

Number of video files 52 104 208 416 520 2594

Table 2. Parameters for each original and transcoded video file

Parameter Original video file Transcoded video file

Codec Xvid MPEG-4

Container AVI MP4

Size 200MB 60MB

Duration 3 min 19s 3 min 19s

Resolution 1280 x 720 320 x 240

We measure the total transcoding time of image and video transcoding modules. For

evaluating the image transcoding function, we focus on measuring the total time to transcode

large amounts of image data sets (JPG files) into a specific format (PNG files). For evaluating

the video transcoding function, we measure the encoding time to transcode large sizes of video

files into target files. The parameters for each original and target transcoded video file are

listed in Table 2.

During the experiment, the following default options in Hadoop are used. (1) The number of

block replications is set to 3. (2) The block size is set to 64MB. In order to verify the efficiency

of our system, we conduct three sets of experiments: (1) examine how a change in cluster size

affects performance speedup, (2) explore different Hadoop options for different block sizes

2840 Kim et al.: A Hadoop-based Multimedia Transcoding System for Processing Social Media

(32, 64, 128, 256, 512), and (3) explore different Hadoop options for different block

replication factors (1, 2, 3, 4, 5).

6.2 Changing Cluster Size for Speedup Performance

In the first set of experiments, we measure the total transcoding time for image and video

transcoding functions under varying cluster size, including 1, 4, 8, 12, 16, 20, 24, 28 nodes.

Hadoop default options are explained in the experiment environment section.

Table 3. Total image and video transcoding time for various cluster size and speedup (s)

The total image

transcoding time (s)

Image data set size

1GB 2GB 4GB 8GB 10GB 50GB

Cluster size

(node)

1 247 473 933 1852 2311 11507

4 75 129 246 473 590 2887

8 48 75 130 247 301 1454

12 39 58 94 168 210 976

16 31 48 75 130 158 735

20 30 39 66 111 131 590

24 30 40 57 93 112 508

28 23 32 49 84 102 428

Speedup

1 1 1 1 1 1 1

4 3.29 3.67 3.79 3.92 3.92 3.99

8 5.15 6.31 7.18 7.50 7.68 7.91

12 6.33 8.16 9.93 11.02 11 11.79

16 7.97 9.85 12.44 14.25 14.63 15.66

20 8.23 12.13 14.14 16.68 17.64 19.50

24 8.23 11.83 16.37 19.91 20.63 22.65

28 10.74 14.78 19.04 22.05 22.66 26.89

The total video

 transcoding time (s)

Video data set size

1GB 2GB 4GB 8GB 10GB 50GB

 Cluster size

(node)

1 863 1710 3465 6842 8498 42471

4 272 506 952 1804 2268 11040

8 183 276 512 953 1188 5583

12 170 196 363 640 793 3720

16 166 188 282 517 620 2824

20 165 171 247 412 498 2226

24 161 166 203 356 414 1841

28 124 169 207 311 375 1623

Speedup

1 1 1 1 1 1 1

4 3.17 3.38 3.64 3.79 3.75 3.87

8 4.72 6.20 6.77 7.18 7.15 7.66

12 5.08 8.72 9.55 10.69 10.72 11.49

16 5.20 9.10 12.29 13.23 13.71 15.13

20 5.23 10.00 14.03 16.61 17.06 19.20

24 5.36 10.30 17.07 19.22 20.53 23.22

28 6.96 10.12 16.74 22.00 22.66 26.33

We also conduct parallel speedup measurements. Parallel speedup refers to how many times

faster the parallel and distributed executions are compared to running the transcoding

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012 2841

functions implemented by the same MapReduce programming on a single node. If speed up is

greater than 1, there is at least some gain from carrying out the work in parallel. If speedup is

the same as the number of machines, our cloud server and MapReduce programming has a

perfect scalability and ideal performance. Speedup is defined as: Speedup (n) = transcoding

time on 1 node / transcoding time on n nodes.

Table 3 shows the transcoding time as a function of cluster size and speedup. Fig. 10(a)

shows the result of the experiment for each cluster size in an image transcoding module. Fig.

10(c) illustrates the result of speedup in the same module. Fig. 10(b) and Fig. 10(b) show the

effect of cluster size and speed up in a video transcoding module, respectively. According to

Table 3, our Hadoop-based media transcoding system shows excellent performance in image

and video transcoding functions for very large image and video files. For example, with image

transcoding, our system takes 428 s (approximately 7 min) to conduct image transcoding

processing for 50GB in 28 nodes. For video transcoding, it takes 1623 s (approximately 27

min) under the same conditions.

(a) (b)

 (c) (d)

Fig. 10. (a) Transcoding time versus cluster size using the image transcoding module and (b) the video

transcoding module (c) Speedup versus cluster size in the image transcoding module and (d) video

transcoding module

From Fig. 10 (a) and (b), for 4, 8 and 12 nodes the running time decreases dramatically and

from 16 nodes to 28 nodes the transcoding time reduces gradually in both of the two modules.

From Fig. 10 (c) and (d), speedup performance for 10 and 50GB data sets are higher compared

to speedup performances for 1, 2, 4, 8GB datasets, implying that our system exhibits good

performance when the size of the data set increases.

2842 Kim et al.: A Hadoop-based Multimedia Transcoding System for Processing Social Media

6.3 Changing Block Size Factor

For the second set of experiment, we measure the total elapsed time with the different

Hadoop options with respect to block size factor (default: 64MB). Hadoop processes large

amounts of data sets in a parallel and distributed manner after data sets are chunked into a

64MB chunk size. However, users and programmers can change the block size options in

order to improve the performance of data processing according to the size and type of

unstructured data. Thus, in order to determine the optimal block size condition, we measure

the total media transcoding time with five block size options, 32, 64, 128, 256, 512MB. Table

4 lists the measured image and video transcoding time in seconds for different block sizes.

Table 4. Total image and video transcoding time for various values of block size (s)

The total image

transcoding time (s)

Image data set size

1GB 2GB 4GB 8GB 10GB 50GB

Block size

(MB)

32 23 30 49 84 102 437

64 23 32 49 84 102 428

128 23 31 50 84 102 436

256 24 30 49 85 103 436

512 23 32 50 85 102 436

The total video

 transcoding time (s)

Video data set size

1GB 2GB 4GB 8GB 10GB 50GB

Block size

(MB)

32 173 226 335 532 657 2837

64 124 169 207 311 375 1623

128 103 108 120 199 209 820

256 102 103 106 106 116 443

512 102 105 105 111 109 444

As shown in Table 4, Fig. 11 (a), and Fig. 11 (b), there is no difference in performance for

different block size options in the image transcoding module (Fig. 11 (a)), whereas the

transcoding performance for video transcoding module with Hadoop block size options of 256

or 512MB are better compared to 32, 64, and 128MB. From the results, we find that when the

block size option is set to a value greater than or close to the original file size, our system

provides good performance for media transcoding processes. In fact, since one video data set

has a file size of 200MB, 256 or 512 MB block sizes show the best performance for

transcoding processing.

(a) (b)

Fig. 11. (a) Total image transcoding time versus data size for various block sizes (b) Total video

transcoding time versus data size for various block sizes

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012 2843

6.4 Changing Block Replication Factor

In the third set of experiments the total transcoding time with different Hadoop options with

respect to block replication factor (default: 3) is measured. When large amounts of data sets

are stored in HDFS, HDFS splits the data set into fixed size blocks for quick searching and

processing. In fact, with the Hadoop default option for block replication, replicated data is

stored on three data nodes of HDFS in order to rebalance, move copies around, and continue

data replication when system faults such as disk failures or network connection problems

occur. Hence, in order to verify how block replication factors affects performance, we measure

the elapsed time in order to complete media transcoding processing. Five values of block

replication factor, 1, 2, 3, 4 and 5 are used in the experiment. Table 5 lists the measured image

and video transcoding time in seconds for different block replication factor values.

Table 5. Total image and video transcoding time for various values of block replication factor (s)

The total image

transcoding time (s)

Image data set size

1GB 2GB 4GB 8GB 10GB 50GB

Block

replication

(EA)

1 28 40 63 114 135 1092

2 22 30 50 84 103 436

3 23 32 49 84 102 428

4 24 30 48 85 102 435

5 23 31 48 84 102 435

The total video

 transcoding time (s)

Video data set size

1GB 2GB 4GB 8GB 10GB 50GB

Block

replication

(EA)

1 144 220 309 467 517 2330

2 160 176 239 323 384 1616

3 124 169 207 311 375 1623

4 160 165 212 326 389 1643

5 166 170 224 347 400 1492

According to Table 5, Fig. 12 (a), and Fig. 12 (b), two modules show the best performance

when the block replication factor value is set to three. The worst performance occurs when the

block replication factor is set to one, since new blocks with problems should be copied and

transferred to a new data node on HDFS when disk failure and data loss occur. If the block

replication factor is set to more than two, the process delay for performing fault tolerance does

not occur. In addition, this performance degradation is caused by rescheduling job tasks in the

master node in order to cope with recovering system failures.

(a) (b)

Fig. 12. (a) Total image transcoding time and total video transcoding time (b) versus data set size for

various values of block replication factor

2844 Kim et al.: A Hadoop-based Multimedia Transcoding System for Processing Social Media

Although a similar performance is provided in both modules when the block size option value

is set to more than three, we highly recommend that the block replication factor to be set to

three, since many block replicas result in an unnecessary waste of storage space and more

processing time for copying and transferring a large amounts of blocks.

6.5 Comparing two versions of video transcoding module

To compare the transcoding performance of our Hadoop-based approach with that of the

traditional parallel processing approach, we implemented two versions of the video

transcoding module running on the same cluster. The first version is our Hadoop-based

transcoding module, whereas the other version is the traditional frame-based parallel

transcoding module. We exploit the Media Encoding Cluster [35] for the traditional approach.

The Media Encoding Cluster written in C and C++ is the first open source project that deals

with frame-based encoding in a distributed and parallel manner in commodity hardware to

reduce the encoding time for a file. That is, to encode original media files into target files, our

Hadoop-based transcoding approach splits media files into fixed blocks, while the Media

Encoding Cluster splits media files into frame units.

 We test and compare both approaches using the same video data sets. In case of the

Hadoop-based version, we use the default Hadoop options explained in the experiment

environment section. Table 6 lists the total transcoding time of the two versions with a

speedup calculation that is different from the speedup used in Section 6.2. The speedup used in

this section shows how many times the Hadoop-based transcoding executions are faster than

the traditional parallel-based transcoding executions. Speedup is defined as: Speedup =

traditional frame-based parallel transcoding time / Hadoop-based transcoding time.

Table 6. Total transcoidng time results of two versions of video transcoding module

Video data set

size

Traditional parallel

frame-based transcoding

time (s)

Hadoop-based

transcoding time (s)
Speedup

1GB 264 124 2.12

2GB 463 169 2.73

4GB 928 207 4.48

8GB 1865 311 6.00

10GB 2327 375 6.20

50GB 11601 1623 7.14

Fig. 13. Comparison of transcoding time between Hadoop-based trnascoding and Meida Encoding

Cluster Module (frame-based)

According to Table 6 and Fig. 13, the Hadoop-based transcoding module exhibits better

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012 2845

performance than the Media Encoding Cluster in terms of execution time in all the data sets.

For instance, the total transcoding times for completing the transcoding process for 50 GB of

the Hadoop-based transcoding module and the Media Encoding Cluster are approximately 3 h

and 20 min and 27 min, respectively. From the speed up results, it is observed that the

difference in performance between the two versions increases when the data set size increases.

This means that there is much to be gained from our approach when processing data sets of

larger sizes. The Media Encoding Cluster exhibits lower performance than our module

because it involves greater overhead due to the steps for splitting and merging the original

media files. Our approach splits original video files into 64 MB blocks and the blocks are

merged after the transcoding process in MbTD, whereas the Media Encoding Cluster splits

original video files into a significantly larger number of frame units compared to the

Hadoop-based transcoding module’s blocks and merges the chunked frames into target video

files. In fact, in case of a 1GB data set (200 MB, 29 frames, 3 min 19 s), our module creates 20

chunked blocks of 64 MB, while the Media Encoding Cluster produces approximately 29000

chunked frames.

7. Conclusion and Future work

In this paper, we briefly review our social media cloud computing service environment

(SMCCSE) and a social media cloud computing PaaS platform. In order to implement social

media transcoding functions for transcoding image and video content into a specific format

according to user transcoding requirements, we proposed a Hadoop-based multimedia

transcoding system in the PaaS platform of SMCCSE. In order to reduce the transcoding time

and ensure transcoded image and video quality, we apply a HDFS and MapReduce framework

to our system, which are emerging technologies in the cloud computing field. Our system

overcomes the difficulties related to emerging and merging policies in distributed video

processing and fault tolerance and load balancing management in large-scale distributed

systems by obeying Hadoop policies.

In the performance evaluation section, we focus on measuring the total transcoding time for

various sets of experiments: (1) a change in cluster size for speedup of performance, (2)

different Hadoop options with respect to block size (32, 64, 128, 256, 512MB), (3) different

Hadoop options for different block replication factors (1, 2, 3, 4, 5). Through these

experiments, we experimentally verified the excellent performance of our system in media

transcoding processing and identified the ideal Hadoop options suitable for media transcoding

processing. When the block size option is set to a value greater than or close to the original file

size and the block replication factor value is set to three, our system delivers good performance

for media transcoding processes. Moreover, in terms of transcoding execution time, our

Hadoop-based transcoding approach implemented using Java exhibits better performance than

the traditional frame-based parallel approach implemented using C and C++.

In the future, we will plan to improve the advanced splitting and merging algorithms and a

load balancing scheme specified in media transcoding processing in Hadoop. We will also

implement distributed video transcoding streaming services optimized for our system.

References

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,”

Communication of the ACM, vol.51, no.1, pp.107-113, Jan. 2008. Article (CrossRef Link)

[2] K. Shvachko, H. Kuang, S. Radia and R. Chansler, “The Hadoop distributed file system,” in Proc.

2846 Kim et al.: A Hadoop-based Multimedia Transcoding System for Processing Social Media

of 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies, pp.1-10, May. 2010.

Article (CrossRef Link)

[3] S. Islam and J.-C.Gregoire, “Giving users an edge: A flexible cloud model and its application for

multimedia,” Future Generation Computer Systems, vol.28, no.6, pp.823-832, Jun. 2012. Article

(CrossRef Link)

[4] W. Gropp, et al., “A high-performance, portable implementation of the MPI message passing

interface standard,” Parallel Computing, vol.22, no.6, pp.789-828, Sep. 1996. Article (CrossRef

Link)

[5] M. Kim and H. Lee, “SMCC: Social media cloud computing model for developing SNS based on

social media,” Communications in Computer and Information Science, vol.206, pp.259-266, 2011.

Article (CrossRef Link)

[6] G. Barlas, “Cluster-based optimized parallel video transcoding,” Parallel Computing, vol.38,

no.4-5, pp.226-244, Apr. 2012. Article (CrossRef Link)

[7] I. Ahmad, X. Wei, Y. Sun and Y.-Q. Zhang,” Video transcoding: An overview of various

techniques and research issues,” IEEE Transactions on Multimedia, vol.7, no.5, pp.793-804 Oct.

2005. Article (CrossRef Link)

[8] Y.-K. Lee, et al., “Customer requirements elicitation based on social network service,” KSII

Transactions on Internet and Information Systems, vol.5, no.10, pp.1733-1750, Oct. 2011. Article

(CrossRef Link)

[9] S. Mirri, P. Salomoni and D. Pantieri, “RMob: Transcoding rich multimedia contents through web

services,” in Proc. of 3rd IEEE Consumer Communications and Networking Conference, vol.2,

pp.1168-1172, Jan. 2006. Article (CrossRef Link)

[10] Hadoop MapReduce project, http://hadoop.apache.org/mapreduce/

[11] Z. Lei, “Media transcoding for pervasive computing,” in Proc. of 5th ACM Conf. on Multimedia,

no4, pp.459-460, Oct. 2001. Article (CrossRef Link)

[12] D.M. Boyd and N.B. Ellison, “Social network sites: Definition, history, and scholarship,” Journal

of Computer-Mediated Communication, vol.13, no.1, pp.210-230, Oct. 2007. Article (CrossRef

Link)

[13] Apache Hadoop project, http://hadoop.apache.org/

[14] C.L. Covle, and H. Vaughn, “Social Networking: Communication revolution or evolution?,” Bell

Labs Technical Journal, vol.13, no.2, pp.13-17, Jun. 2008. Article (CrossRef Link)

[15] J. Guo, F. Chen and L. Bhuyan, R. Kumar, “A cluster-based active router architecture supporting

video / audio stream transcoding service,” in Proc. of Parallel and Distributed Processing

Symposium, Apr. 2003. Article (CrossRef Link)

[16] Y. Sambe, S. Watanabe, D. Yu, T. Nakamura, N. Wakamiya, “High-speed distributed video

transcoding for multiple rates and formats,” IEICE Transactions on Information and Systems,

vol.E88-D, no.8, pp.1923-1931, Aug. 2005. Article (CrossRef Link)

[17] M.-J. Kim, H. Lee, H. Lee, “SMCCSE: PaaS Platform for processing large amounts of social

media,” in Proc. of the 3rd international Conf. on Internet, pp.631-635, Dec. 2011. Article

(CrossRef Link)

[18] J. Shafer, S. Rixner and A.L. Cox, “The Hadoop distributed file system: Balancing portability and

performance,” in Proc. of IEEE International Symposium on Performance Analysis of Systems and

Software, pp.122-133, Mar. 2010. Article (CrossRef Link)

[19] Z. Tian, J, Xue, W. Hu, T. Xu and N. Zheng, “High performance Cluster-based Transcoder,” in

Proc. of 2010 International Conf. on Computer Application and System Modeling, vol.2, pp.

248-252, Oct. 2010. Article (CrossRef Link)

[20] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, “Cloud computing and emerging IT platforms:

Vision, hype, and reality for delivering computing as the 5th utility,” Future Generation Computer

Systems, vol.25, no.6, pp.599-616, Jun. 2009. Article (CrossRef Link)

[21] R. Lammel, “Google’s MapReduce programing model - Revisited,” Science of Computer

Programming, vol.68, no.3, pp.208-237, Oct. 2007. Article (CrossRef Link)

[22] M.A. Vouk, “Cloud Computing – Issues, research and implementations,” in Proc. of 30th

International Conf. on Information Technology Interfaces, pp.31-40, Jun. 2008. Article (CrossRef

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012 2847

Link)

[23] C. Poellabauer and K. Schwan, “Energy-aware media transcoding in wireless systems,” in Proc. of

Second IEEE Annual Conf. on Pervasive Computing and Communications, pp.135-144, Mar.ch,

2004. Article (CrossRef Link)

[24] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A.

Rabkin, I. Stoica, M. Zaharia, “A view of cloud computing,” Communication of the ACM, vol.58,

no.4, pp.50-58, April, 2010. Article (CrossRef Link)

[25] Xuggler Java library, http://www.xuggle.com/xuggler/index

[26] Shenoy, J. Prashant, Vin, M. Harrick, “Efficient striping techniques for multimedia file servers,” in

Proc. of the IEEE International Workshop on Network and Operating System Support for Digital

Audio and Video, pp.25-36, 1997. Article (CrossRef Link)

[27] M.A. Weifeng, and M. Keji, “Research on java imaging technology and its programming

framework,” Lecture Notes in Electrical Engineering, vol.72, pp.61-68, 2010. Article (CrossRef

Link)

[28] D. Seo, J. Lee, C. Choi, H. Choi, I. Jung, “Load distribution strategies in cluster-based transcoding

servers for mobile clients,” Lecture Notes in Computer Science, vol.3983, pp.1156-1165, May.

2006. Article (CrossRef Link)

[29] S. Roy, B. Shen, V. Sundaram, R. Kumar, “Application level hand off support for mobile media

transcoding sessions,” in Proc. of the 12th International Workshop on Network and Operating

Systems for Digital Audio and Video, pp.95-104, May. 2002. Article (CrossRef Link)

[30] D. Seo, J. Kim and I. Jung, “Load distribution algorithm based on transcoding time estimation for

distributed transcoding servers,” in Proc. of 2010 Conf. on Information Science and Applications,

article no.5480586, Apr. 2010. Article (CrossRef Link)

[31] R.L. Grossman, “The Case for Cloud Computing,” IT Professional Journal, vol.11, no.2, pp.23-27,

Mar. 2009. Article (CrossRef Link)

[32] Q. Zhang, L. Cheng and R. Boutaba, “Cloud computing: State-of-the-art and research challenges,”

Journal of Internet Services and Applications, vol.1, no.1, pp.7-18, May. 2010. Article (CrossRef

Link)

[33] S. Ghemawat, H. Gobioff and S.-T. Leung, “The google file system,” Operating Systems Review

(ACM), vol.37, no.5, pp.29-43, Oct. 2003. Article (CrossRef Link)

[34] X. Liao and H. Jin, “A new distributed storage scheme for cluster video server,” Journal of Systems

Architecture, vol.51, no.2, pp.79-94, Feb. 2005. Article (CrossRef Link)

[35] Media Encoding Cluster Project, http://www.encodingcluster.com

Myoungjin Kim received B.S. degree in computer science from Daejin University in 2007

and M.S. degree from Konkuk University, Seoul, Korea, in 2009. Currently, He is a Ph.D.

student in the department of Internet and Multimedia Engineering at the same university and

also assistant researcher at the Social Media Cloud Computing Research Center. His research

interest includes distributed computing, real-time programming, MapReduce, Hadoop, Media

transcoding and cloud computing

Seungho Han is a M.S course student in the department of Internet and Multimedia

Engineering at University of Konkuk. He is also and also assistant researcher at the Social

Media Cloud Computing Research Center. He is current research interests are UPnP, cloud

computing system, Hadoop

2848 Kim et al.: A Hadoop-based Multimedia Transcoding System for Processing Social Media

Yun Cui received M.S degree in the division of Internet and Multimedia Engineering at

Konkuk University, Korea and currently he is Ph.D. student His current research interests

are cloud computing, social network service, home network service and distributed

computing systems.

Hanku Lee is the director of the Social Media Cloud Computing Research Center and an

associate professor of the division of Internet and Multimedia Engineering at Konkuk

University, Seoul, Korea. He received his Ph.D. degree in computer science at the Florida

State University, USA. His recent research interests are in cloud computing, distributed

real-time systems, distributed and compilers.

Changsung Jeong is a professor at the Department of Electrical Engineering at Korea

University. He received his M.S.(1985) and Ph.D(1987) from Northwestern University, and

B.S.(1981) from Seoul National University. Before joining Korea University, he was a

professor at POSTECH during 1982-1992. He was on editorial board for Journal of Parallel

Algorithms and Application in 1992-2002. Also, he has been working as a chairman of

Collaborative Supercomputing Group in GFK(Global Forum in Korea) since 2001, and a

chairman of Computer Chapter at Seoul Section of IEEE region 10. His research interests

include distributed concurrent computing, grid computing, cloud computing, and

collaborative ubiquitous computing.

