The history of conic sections and mathematics education

원뿔곡선의 수학사와 수학교육

  • Jin, Man Young (Graduate School of Mathematics Education, Seoul National University) ;
  • Kim, Dong Won (Korea Foundation for the advancement of Science and Creativity) ;
  • Song, Min Ho (Graduate School of Education, Sookmyung Women's University) ;
  • Cho, Han Hyuk (Department of Mathematics Education, Seoul National University)
  • 진만영 (서울대학교 수학교육과 대학원) ;
  • 김동원 (한국과학창의재단) ;
  • 송민호 (숙명여자대학교 교육대학원) ;
  • 조한혁 (서울대학교 수학교육과)
  • Received : 2012.10.05
  • Accepted : 2012.11.12
  • Published : 2012.11.30

Abstract

The conic sections are defined as algebraic expressions using the focus and the directrix in the high school curriculum. However it is difficult that students understand the conic sections without environment which they can manipulate the conic sections. To make up for this weak point, we have found the evidence for generating method of a conic section through a sundial and investigated the history of terms 'focus', 'directrix' and the tool of drawing them continuously.

고등학교 교육과정에서 학생들은 원뿔곡선 조작 환경을 제공 받지 못하고 초점과 준선을 이용하여 대수적 정의를 받아들이며, 원뿔곡선을 동적인 의미 없이 정적인 대수적 문제로 국한해서 생각하는 경향이 있다. 대수적인 표현뿐만 아니라 동적인 기하학적 표현을 보완하기 위해 원뿔곡선을 원뿔 절단으로 정의한 역사적 근거를 해시계에서 찾고 원뿔 절단으로는 설명할 수 없는 초점과 준선 개념의 역사도 살펴본다. 그리고 원뿔곡선을 연속적으로 그리기 위해 사용된 도구들에 대해서 알아보고, 학생들의 활동을 위한 공학적 도구로 컴퓨터 환경을 살펴본다.

Keywords

Acknowledgement

Supported by : 숙명여자대학교

References

  1. 김수환 외, 기하와 벡터, (주) 교학사. 서울. 2010.
  2. 케네스 C. 데이비스 저/ 이충효 역, 우주의 발견, 푸른숲. 2003.
  3. Apollonius of Perga, Conics, 2nd ed. Green Lion Press, Santa Fe, New Mexico, 2000.
  4. Bos, H. J. M., "On the representation of curves in Descartes' Geometrie", Archive for History of Exact Sciences, 24, (1981), pp. 295-338. https://doi.org/10.1007/BF00357312
  5. Boyer Carl B, A History of mathematics, 2d ed. John Wiley, New York 1991.
  6. Burton David M., The History of Mathematics, six edition. McGRAW-HILL, Singapore, 2007.
  7. Clagett M., Ancient Egyptian Science, A Source Book. Volume Three: Ancient Egyptian mathematics, American Philosophical Society, Philadelphia, 1999.
  8. Cohen M. R., & Drabkin I. E., A Source Book in Greek Science, Harvard Univ Press, 1975.
  9. Coolidge J. L., A History of the Conic Sections and Quadric Surfaces, Dover, New York, 1968.
  10. Dolan W. W.,"Early Sundials and the Discovery of the Conic Sections", Mathematics Magazine, 45(1), (1972), pp. 8-12. https://doi.org/10.2307/2688372
  11. Gibbs S. L., Greek and Roman Sundials, Yale University Press, New Haven and London, 1976.
  12. Heath T. L., A History of Greek Mathematics, DOVER, NEW YORK, 1981.
  13. Heath T. L., A Mannual of Greek Mathematics, DOVER, NEW YORK, 2003.
  14. Howard Eves 저/ 이우영, 신항균 역, 수학사, 경문사, 2005.
  15. Jones A., Pappus of Alexandria - Book 7 of the Collection, Springer, New York, 1986.
  16. King H. C., The History of the Telescope, Dover, New york, 2003.
  17. Knorr wilbur R., Textual Studies in Ancient and Medieval Geometry, Birkhauser Boston, 1989.
  18. Lina Mancini Proia & Marta Menghini, "Conic sections in the sky and on the earth", Educational Studies in Mathematics 15 (1984), pp. 191-210. https://doi.org/10.1007/BF00305896
  19. Ling L. H., & Tee L. S., The Mathematics of Sundials.
  20. Linton C. M., From Eudoxus to Einstein, Cambridge Univ Press, UK, 2004, http://www.math.nus.edu.sg/aslaksen/projects/sundials/
  21. Maria G. B. Bussi, Maria A. Mariotti., "Semiotic Mediation: from History to the Mathematics Classroom", For the Learning of Mathematics 19(2), (1999), pp. 27-35.
  22. Mayall R. N., & Mayall M, W. Sundials, Sky Publishing Corporation, Cambridge, Massachusetts, 1973.
  23. Neugebauer O., A History of ancient mathematical Astronomy, Springer, New York, 1975.
  24. Neugebauer O., "The Astronomical Origin of the Theory of Conic Sections", Proceedings of the American Philosophical Society, 92(3), (1948), pp. 136-138.
  25. Rashed R. "A Pioneer in Anaclastics : Ibn Sahl on Burning Mirrors and Lenses", ISIS, 81(3), (1990), pp. 464-491. https://doi.org/10.1086/355456
  26. Rohr Rene R. J., Sundials : History, theory and practice, Dover, New York, 1996.
  27. Rosin P. L., "on Serlio's Constructions of ovals", The mathematical Intelligencer, 23(1), (2001), pp. 58-69. https://doi.org/10.1007/BF03024523