DOI QR코드

DOI QR Code

차세대 자기기록 채널을 위한 LDPC-LDPC 곱 부호의 성능 평가

Performance Evaluation of LDPC-LDPC Product Code for next Magnetic Recording Channel

  • 박동혁 (숭실대학교 정보통신전자공학부) ;
  • 이재진 (숭실대학교 정보통신전자공학부)
  • Park, Donghyuk (School of Electronics Engineering, Soongsil University) ;
  • Lee, Jaejin (School of Electronics Engineering, Soongsil University)
  • 투고 : 2012.09.13
  • 발행 : 2012.11.25

초록

2차원 곱 부호는 저장장치 시스템에서 연집 오류를 정정하기 위해 연구되었다. RS-LDPC 곱 부호는 횡 방향의 RS 부호와 종 방향의 LDPC 부호로 이루어져 있다. 먼저 횡 방향의 RS 부호를 이용하여 연집 오류를 검출하며, 이 연집 오류의 위치 정보를 활용하여 종 방향의 LDPC 부호로 오류를 정정한다. 저장장치에서는 여러 가지 요인에 의해 연집 오류가 발생할 수 있다. 따라서 저장장치 시스템에서는 연집 오류에 강한 부호가 필요하다. RS-LDPC 곱 부호는 연집 오류에 강하다. 하지만 저장 밀도가 커지면서 연집 오류의 길이는 더 길어지게 된다. 따라서 본 논문에서는 긴 연집 오류에도 강한 특성을 보이는 LDPC-LDPC 곱 부호를 제안한다. 또한, RS-LDPC 곱 부호와 비교하여 LDPC-LDPC 곱 부호는 횡 방향으로 LDPC 부호를 사용하여 많은 램덤 오류가 발생 하였을 때 안정적인 성능 이득이 있다.

Two-dimensional product code has been studied for correcting burst errors on the storage systems. An RS-LDPC product code consists of an RS code in horizontal direction and an LDPC code in vertical direction. First, we detect the position of burst errors by using RS code, then LDPC code corrects the errors by using the burst error positions. In storage system, long burst errors are occurred by various reason. So, we need a strong code for correcting the long burst errors. RS-LDPC product code is good for long burst errors. However, as the storage density grows the length of the burst errors will be longer. Thus, we propose an LDPC-LDPC product code, it is strong for correcting the very long burst errors. Also, the proposed LDPC-LDPC product code performs better than RS-LDPC product code when the random errors are occurred, because a row direction LDPC code performs better than row direction RS code.

키워드

참고문헌

  1. B. Bo, M. Avenell, J. Tsoi, L. Mei, S. Malhotra, and G. Bertero, "Thermal stability improvement for longitudinal magnetic recording media," IEEE Transactions on Magnetics, vol. 41, no. 2, pp. 648-653, Feb. 2005. https://doi.org/10.1109/TMAG.2004.838052
  2. H. N. Bertram, and M. Williams, "SNR and density limit estimates: a comparison of longitudinal and perpendicular recording," IEEE Transactions on Magnetics, vol. 36, no. 1, pp. 4-9, Jan. 2000. https://doi.org/10.1109/20.824417
  3. R. D. Cidediyan, F. Dolivo, R. Hermann, W. Hirt, W. Schott, "A PRML system for digital magnetic recording," IEEE Journal of Selected Areas Communications, vol. 10, no. 1, pp. 38-56, Jan. 1992. https://doi.org/10.1109/49.124468
  4. T. Oenning and J. Moon, "Partial response maximum likelihood detection for perpendicular recording," IEEE International Magnetics Conference (Intermag), 2000, pp. 684.
  5. B. Vasic, E. M. Kurtas, and A. V. Kuznetsov, "Regular lattice LDPC codes in perpendicular magnetic recording," IEEE International Magnetics Conference (Intermag), 2000, pp. GP5.
  6. Y. cai, S. Jeon, K. Mai, B. V. K. V. Kumar, "Highly parallel FPGA emulation for LDPC error floor characterization in perpendicular magnetic recording channel," IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 3761-3764, Oct. 2009. https://doi.org/10.1109/TMAG.2009.2022318
  7. Y. Nakamura, Y. Okamoto, H. Osawa, H. Saito, and H. Muraoka, "A study of turbo decoding with embedded AR channel model for perpendicular recording," IEEE Transactions on Magnetics, vol. 39, no. 5, pp. 2570-2572, Sep. 2003. https://doi.org/10.1109/TMAG.2003.816482
  8. W. Chang, J. R. Cruz, "Nonbinary LDPC codes for 4-kB sectors," IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 3781-3784, Nov. 2008. https://doi.org/10.1109/TMAG.2008.2002368
  9. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, Proceeding of the IEEE, vol. 96, no. 11, pp. 1810-1835, Nov. 2008.
  10. Y. Nozaki, A. Kato, K. Noda, Y. Kanai, T. Tanaka, and K. Matsuyama, "Micromagnetic study on microwave-assisted magnetic recording in perpendicular medium with intergrain exchange coupling," Journal of Applied Physics, vol. 109, no. 12, pp. 123912-123912-6, June 2011. https://doi.org/10.1063/1.3596805
  11. M. K. Grobis, O. Hellwig, T. Hauet, E. Dobisz, and T. R. Allbrecht, "High-density bit patterned media: magnetic design and recording performance," IEEE Transactions on Magnetics, vol. 47, no. 1, pp. 6-10, Jan. 2011. https://doi.org/10.1109/TMAG.2010.2076798
  12. P. W. Nutter, Y. Shi, B. D. Belle, and J.J. Miles, "Understanding sources of errors in bit-patterned media to improve read channel performance," IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 3797-3800, Nov. 2008. https://doi.org/10.1109/TMAG.2008.2002516
  13. Y. Nakamura, Y. Okamoto, H. Osawa, H. Muraoka, and H. Aoi, "Burst detection by parity check matrix of LDPC code for perpendicular magnetic recording using bit-patterned medium," International Symposium on Information Theory and Its Applications, 2000. pp. 1-6.
  14. Y. Han, W. E. Ryan, and R. Wesel, "Dual-mode decoding of product codes with application to tape storage," IEEE Global Telecommunications Conference (Globecom), 2005, vol. 3, pp. 1255-1260.
  15. R. Amutha, "Erasure correcting capability of SPC product codes," International Conference on Signal Processing, Communications and Networking (ICSN), 2007, pp. 183-188.
  16. T. V. Vo, and S. Mita, "A novel error-correcting system based on product codes for future magnetic recording channels," IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 3320-3323, Oct. 2011. https://doi.org/10.1109/TMAG.2011.2157091
  17. N. Yibin, C. Kui, B.V.K.V Kumar, Z. Z. Songhua, and C. Tow, "Modeling and two-dimensional equalization for bit-patterned media channels with media noise," IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 3535-3538, Oct. 2009. https://doi.org/10.1109/TMAG.2009.2024427
  18. N. Xie, T. Zhang, and E. Haratsch, "Improving burst error tolerance of LDPC-centric coding systems in read channel," IEEE Transactions on Magnetics, vol. 46, no. 3, pp. 933-941, March 2010. https://doi.org/10.1109/TMAG.2009.2034012

피인용 문헌

  1. Iterative LDPC-LDPC Product Code for Bit Patterned Media pp.1941-0069, 2016, https://doi.org/10.1109/TMAG.2016.2618008