DOI QR코드

DOI QR Code

Impact of Interface Charges on the Transient Characteristics of 4H-SiC DMOSFETs

  • Kang, Min-Seok (Dept. of Electronic Materials Engineering, Kwangwoon University) ;
  • Bahng, Wook (Korea Electrotechnology Research Institute, Power Semiconductor Research Group) ;
  • Kim, Nam-Kyun (Korea Electrotechnology Research Institute, Power Semiconductor Research Group) ;
  • Ha, Jae-Geun (Dept. of Electronic Materials Engineering, Kwangwoon University) ;
  • Koh, Jung-Hyuk (Dept. of Electronic Materials Engineering, Kwangwoon University) ;
  • Koo, Sang-Mo (Dept. of Electronic Materials Engineering, Kwangwoon University)
  • Received : 2011.03.09
  • Accepted : 2012.01.02
  • Published : 2012.03.01

Abstract

In this paper, we study the transient characteristics of 4H-SiC DMOSFETs with different interface charges to improve the turn-on rising time. A physics-based two-dimensional mixed device and circuit simulator was used to understand the relationship between the switching characteristics and the physical device structures. As the $SiO_2$/SiC interface charge increases, the current density is reduced and the switching time is increased, which is due primarily to the lowered channel mobility. The result of the switching performance is shown as a function of the gate-to-source capacitance and the channel resistance. The results show that the switching performance of the 4H-SiC DMOSFET is sensitive to the channel resistance that is affected by the interface charge variations, which suggests that it is essential to reduce the interface charge densities in order to improve the switching speed in 4H-SiC DMOSFETs.

Keywords

References

  1. O.J, Guy, M. Lodzinski, K.S. Teng, T.G.G Maffeis, M. Tan, I. Blackwood, P.R. Dunstan, O. Al-Hartony, S.P Wilks, T. Wilby, N. Rimmer, D. Lewis, and J. Hopkins, Appl. Surf. Sci. 254, p. 8098, 2008. https://doi.org/10.1016/j.apsusc.2008.03.056
  2. R. habchi, C. salame, A. Khoury, and P. Mialhe, Appl. Phys. Lett. 88, p. 153503, 2006. https://doi.org/10.1063/1.2194007
  3. S. Hino, T. Hatayama, J. Kato, E. Tokumitsu, N. Miura, and T. Oomori, Appl. Phys. Lett. 92, p. 183503, 2008. https://doi.org/10.1063/1.2903103
  4. A. Saha, and James A. Cooper, IEEE Trans. Electron Devices 54, p. 2786, 2007. https://doi.org/10.1109/TED.2007.904577
  5. K. Matocha, Solid-State Electron. 52 (2008), p. 1631. https://doi.org/10.1016/j.sse.2008.06.034
  6. A. Saha and James A. Cooper, IEEE Trans. Electron Devices 54, p. 2786, 2007. https://doi.org/10.1109/TED.2007.904577
  7. M. Martin, A. Saha, and James A. cooper, IEEE Trans. Electron Devices 51, p. 1721, 2004. https://doi.org/10.1109/TED.2004.835622
  8. T. Tamaki, Ginger G. Walden, Y. Sui, and James A. Cooper, IEEE Trans. Electron Devices 55, p. 1920, 2008. https://doi.org/10.1109/TED.2008.926965
  9. Y. C. Choi, H. Y. Cha, Lester F. Eastman, and Michael G. Spencer, IEEE Trans. Electron Devices 52, p. 1940, 2005. https://doi.org/10.1109/TED.2005.854278
  10. S. H. Ryu, A. Agarwal, J. Richmond, J. Palmour, N. Saks, and J. Williams IEEE Trans. Electron Devices 23, p. 321, 2002. https://doi.org/10.1109/LED.2002.1004222
  11. S. Inaba, T. Mizuno, M. Iwase, M. Takahashi, H. Niiyama, H. Hazama, M. Yoshimi, and A. Toriumi, IEEE Trans. Electron Devices 41, p. 2399, 1994. https://doi.org/10.1109/16.337455
  12. K. Sheng, Y. Zhang, M. Su, J. H. Zhao, X. Li, P. Alexandrov, L. Fursin, Solid-State Electron. 52, p. 1636, 2008. https://doi.org/10.1016/j.sse.2008.06.037

Cited by

  1. Electrical Characteristics of Enhancement-Mode n-Channel Vertical GaN MOSFETs and the Effects of Sidewall Slope vol.10, pp.3, 2015, https://doi.org/10.5370/JEET.2015.10.3.1131