DOI QR코드

DOI QR Code

Performance Evaluation of Antipodal Vivaldi Antenna in the Time- and Frequency-Domains for IR-UWB Systems Application

IR-UWB 시스템 응용을 위한 시간- 및 주파수-영역에서의 앤티포달 비발디 안테나 성능 평가

  • Koh, Young-Mok (Department of Electronic Engineering, Kwangwoon University) ;
  • Kim, Keun-Yong (Department of Electronic Engineering, Kwangwoon University) ;
  • Ra, Keuk-Hwan (Department of Electronic Engineering, Kwangwoon University)
  • Received : 2011.10.11
  • Accepted : 2011.12.29
  • Published : 2012.02.29

Abstract

In this paper, we designed the antipodal vivaldi antenna for IR-UWB systems application and evaluated IR-UWB antenna performance for the ultra wideband impulse signal transmission in the time- and frequency-domain. The designed antipodal vivaldi antenna was fabricated using FR-4 substrate which thickness 1.6 mm, dielectric constant ${\epsilon}_r=4.7$ and $tan{\delta}=0.002$. We measured the return loss, far filed radiation pattern at the anechoic chamber in the frequency-domain. We also performed the pulse fidelity analysis in the time-domain using nano-second impulse signal transmission and demonstrated the feasibility of ultra wideband signal stable transmission in the UWB band. The designed and fabricated antipodal vivaldi antenna could be emitting and receiving the IR-UWB signal while preserving low pulse distortion and good radiation pattern in time- and frequency-domain.

본 논문에서는 IR-UWB(Impulse Radio Ultra Wideband) 시스템 응용을 위한 앤티포달 비발디 안테나를 설계하고, 시간 및 주파수 영역에서 나노 초 단위의 초광대역 임펄스 신호 전송을 위한 IR-UWB 안테나 성능 평가를 수행하였다. 설계된 앤티포달 비발디 안테나는 저가 생산이 가능한 두께 1.6 mm, 유전율 ${\epsilon}_r=4.7$, $tan{\delta}=0.002$인 FR-4 기판을 이용하여 제작하였다. 제작된 안테나는 무반사실에서 주파수 영역 파라메타인 반사 손실, Far 필드방사 패턴을 측정하였다. 또한, 시간 영역에서 나노 초 단위의 임펄스 신호 전송에 따른 펄스 충실도 분석을 수행하여 UWB 대역에서 안정적으로 초광대역 신호 전송이 가능함을 증명하였다. 본 논문에서 설계/제작된 앤티포달 비발디 안테나는 낮은 왜곡과 양호한 방사 특성을 갖고, 나노 초 단위의 초광대역 임펄스를 방사 또는 수신할 수 있다.

Keywords

References

  1. F. Jolani, G. Dadashzadeh, M. Naser Moghadasi, and A. Dadgarpour, "Design and optimization of compact balanced antipodal vivaldi antenna", Progress in Electromagnetics Research C., vol. 9, pp. 183-192, 2009. https://doi.org/10.2528/PIERC09071510
  2. A. Z. Hood, T. Karacolak, and E. Topsakal, "A small antipodal vivaldi antenna for ultrawide-band applications", IEEE Antennas and Wireless Propag. Letters, vol. 7, pp. 656-660, 2008. https://doi.org/10.1109/LAWP.2008.921352
  3. N Fourikis, N. Lioutas, and N. V. Shuley, "Parametric study of the co- and cross-polarisation characteristics of tapered planar and antipodal slotline antennas", IEE Proc. H, 140, (I), pp. 17-22, 1993.
  4. P. J. Gibson, "The vivaldi aerial", Proc. 9th European Microwave Conf., (Brighton, UK), pp. 101-105, 1979.
  5. Li Tianming, Rao Yuping, and Niu Zhongxia, "Analysis and design of UWB vivaldi antenna", IEEE Interna. Sympo. Microwave, Antenna Propag. & EMC Tech. for Wireless Comm., pp. 579-581, 2007.
  6. Homayoon Oraizi, Shahrokh Jam, "Optimum design of tapered slot antenna profile", IEEE Trans., Antennas Propag., vol. 51, no. 8, pp. 1987-1995, Aug. 2003. https://doi.org/10.1109/TAP.2003.811090
  7. J. D. S. Langley, P. S. Hall, and P. Newham, "Novel ultrawide-bandwidth vivaldi antenna with low crosspolarisation", IEE Electronics Letters 11th, vol. 29, no. 23, pp. 2004-2005, Nov. 1993. https://doi.org/10.1049/el:19931336
  8. S. Wang, X. D. Chen, and C. G. Parini, "Analysis of ultra wideband antipodal vivaldi antenna design", Loughborough Antennas and Propagation Conference, pp. 129-132. Loughborough, UK., Apr. 2007.
  9. Sang-Gyu Kim, Kai Chang, "Ultrawide-band transitions and new microwave components using double- sided parallel-strips lines", IEEE Trans., MTT, vol. 52, no. 9, Sep. 2004.
  10. B. Climer, "Analysis of suspended microstrip taper baluns", Proc. Inst. Elect. Eng., Pt. H, vol. 135, pp. 65-69, Apr. 1988.
  11. C. Y. Ho, "New analysis techniques builds better baluns", Microwave RF, pp. 99-102, 1985.
  12. G. Quintero, A. K. Skrivervik, "Analysis of planar UWB elliptical dipoles fed by a coplanar stripline", Proc., IEEE Conf., ICUWB2008, vol. 1, pp. 113-116, 2008.
  13. Ehud Gazit, "Improved design of the vivaldi antenna", IEE Proc., Pt. H, vol. 135, no. 2, pp. 89-92, Apr. 1988.
  14. Mohammad H. H. Agahi, H. Abiri, and F. Mohajeri, "Investigation of a new idea for antipodal vivaldi antenna design", International Journal of Computer and Electrical Engineering, vol. 3, no. 2, pp. 277-281, Apr. 2011.
  15. G. Brzezina, L. Roy, and L. MacEachern, "Planar antennas in LTCC technology with transceiver integration capability for ultra-wideband applications", IEEE Trans., MTT, vol. 54, no. 6, pp. 2830-2839, Jun. 2006. https://doi.org/10.1109/TMTT.2006.875448
  16. Z. Ning Chen, X. H. Wu, and H. F. Li, "Considerations for source pulses and antennas in UWB radio system", IEEE Transactions on Antennas and Propagation, vol. 52, no. 7, pp. 1739-1748, Jul. 2004. https://doi.org/10.1109/TAP.2004.831405
  17. Dong Mei Shan, Zhi Ning Chen, and Xuan Hui Wu, "Signal optimization for UWB radio systems", IEEE Trans. Antennas & Propagation, vol. 53, no. 7, pp. 2178-2184, Jul. 2005. https://doi.org/10.1109/TAP.2005.850755
  18. David Lamensdorf, Leon Susman, "Baseband pulse antenna techniques", IEEE Antennas and Propagation Magazine, vol. 36, no. 1, pp. 20-30, Feb. 1994.

Cited by

  1. Analysis of IR-UWB Tapered Slot Antenna Radiation Pattern using the Group delay and Fidelity vol.50, pp.8, 2013, https://doi.org/10.5573/ieek.2013.50.8.308