Properties of impact modifier reinforced PPS/MWCNT Nanocomposite

충격보강제가 보강된 PPS (polyphenylene sulfide)/MWCNT (multi-walled carbon nanotube) 나노복합체의 물성연구

  • Park, Ji Soo (Department of Applied Chemical Engineering, School of Energy.Material.Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Seung Beom (Department of Applied Chemical Engineering, School of Energy.Material.Chemical Engineering, Korea University of Technology and Education) ;
  • Nam, Byeong Uk (Department of Applied Chemical Engineering, School of Energy.Material.Chemical Engineering, Korea University of Technology and Education)
  • 박지수 (한국기술교육대학교 응용화학공학과) ;
  • 김승범 (한국기술교육대학교 응용화학공학과) ;
  • 남병욱 (한국기술교육대학교 응용화학공학과)
  • Received : 2012.06.05
  • Accepted : 2012.06.18
  • Published : 2012.06.30

Abstract

Polymer composites which have electrical properties have been studied in various industries. The Multi-walled carbon nanotube (MWCNT) are thought to be reinforcements for polymers because of their high aspect ratio and specially mechanical, thermal and electrical properties. We introduced MWCNT and impact modifier in order to improve thermal and mechanical properties of Polyphenylene sulfide (PPS) and give electric characteristic to PPS. The thermal properties were investigated by Differential scanning calorimeter (DSC) and Thermogravimetric analysis (TGA). The morphology, mechanical properties and electrical characteristic were performed by Field emission scanning electron microscopy (FE-SEM), Izod impact tester and surface resistance meter. As a result, we could find that the PPS/MWCNT composites have high conductivity and good mechanical properties than neat PPS resin.

Keywords

References

  1. K. K. Chawla, Composites Materials (Materials Research and Engineering), Springer, New York, 1987.
  2. J. R. Fried, Polymer Science and Technology, 2nd ed., Pearson Education, New York, 2003.
  3. L. Rupprecht, Conductive Polymers and Plastics in Industrial Applications; Plastics Design Library, Norwich, NY, 1999.
  4. H. Biederman, Polymer Physics, Springer-Verlag: Berlin, 1990.
  5. W. Defeng, W. Lanfeng, Z. Weidong, Y. Tao, and Z. Ming, "Study on Physical Properties of Multi walled Carbon Nanotube/Poly(phenylene sulfide) Composites," Polym. Eng. Sci., Vol. 49, pp. 1725-1735, 2009
  6. S. B. Kim, B. U. Nam, and K. M. Lee, "Preparation and characteristics of PP/CF/MWCNT nanocomposites," J. of The Korean Society of Semiconductor & Display Technology, Vol. 10, pp. 107-111, 2011.
  7. Y. Suzhu, M. W. Wai, H. Xiao, and K. J. Yang, "The Characteristics of Carbon Nanotube-Reinforced Poly(phenylene sulfide) Nanocomposites," J. Appl. Polym. Sci., Vol. 113, pp. 3477-3483, 2009. https://doi.org/10.1002/app.30191
  8. D. S. Jeong and B. U. Nam "Properties of PP/MWCNT Nanocomposite Using Pellet-Shaped MWCNT," Polymer(Korea), Vol. 35, No. 1, pp. 17-22, 2011.
  9. S. Li, Y. Qin, J. Shi, Z. Guo, Y. Li, and D. Zhu, "Electrical properties of soluble carbon nanotube/polymer composite films," Chem. Mater., Vol. 17, pp. 130, 2005. https://doi.org/10.1021/cm0491025
  10. R. Ramasubramaniam, J. Chen and H. Liu, "Homogeneous carbon nanotube/polymer composites for electrical applications," Appl Phys Lett, Vol. 83, pp. 2928, 2003.
  11. D. S. Mclachlan, C. Chiteme, C. Park, K. E. Wise, S. E. Lowther, P. T. Lillehei, E. J. Siochi, Harrison, and J. S. J., "AC and DC percolative conductivity of single wall carbon nanotube polymer composites," J. Polym. Sci. Part B: Polym. Phys., Vol. 43, pp. 3273, 2005. https://doi.org/10.1002/polb.20597
  12. H. J. Barraza, F. O. Pompeo, E. A. O'Rear, and D. E. Resasco, "Nanotube-Filled Thermoplastic and Elastomeric Composites Prepared by Miniemulsion Polymerization," Nano Letters, Vol. 2, pp. 797-802, 2002. https://doi.org/10.1021/nl0256208
  13. W. Defeng, W. Liang, S. Yurong, and Z. Ming, "Rheological properties and crystallization behavior of multi-walled carbon nanotube/poly($\varepsilon$-caprolactone) composites," J. Polym. Sci. Part B: Polym. Phys., Vol. 45, pp. 3137, 2007. https://doi.org/10.1002/polb.21309
  14. S. Kirkpatrick, "Percolation and Conduction," Rev. Mod. Phys., Vol. 45, pp. 574-588, 1973. https://doi.org/10.1103/RevModPhys.45.574
  15. Y. S. Song and J. R. Youn, "Influence of dispersion states of carbon nanotubes in the nanocomposites," Carbon, Vol. 43, pp. 1378, 2005. https://doi.org/10.1016/j.carbon.2005.01.007
  16. L. Y. Li, C. Y. Li, C. Y. Ni, L. X. Rong, and B. Hsiao, "Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents," Polymer, Vol. 48, pp. 3452, 2007. https://doi.org/10.1016/j.polymer.2007.04.030
  17. D. H. Xu and Z. G. Wang, "Role of multi-wall carbon nanotube network in composites to crystallization of isotactic polypropylene matrix," Polymer, Vol. 49, pp.330, 2008. https://doi.org/10.1016/j.polymer.2007.11.041
  18. P. Huo and P. Cebe, "Effects of thermal history on the rigid amorphous phase in poly(phenylene sulfide)," Colloid Polym. Sci, Vol. 270, pp. 840, 1992. https://doi.org/10.1007/BF00657728
  19. J. J. Scobbo and C. R. Hwang, "Annealing effects in poly(phenylene sulfide) as observed by dynamic mechanical analysis," Polym. Eng. Sci., Vol. 34, pp. 1744-1749, 1994. https://doi.org/10.1002/pen.760342305
  20. T. G. Gopakumar, S. Ponrathnam, C. R. Rajan, and A. Fradet, "Poly(phenylene sulfide)/liquid crystalline polymer blends: 1. Non-isothermal crystallization kinetics," Polymer, Vol. 38, pp. 2209 ,1997. https://doi.org/10.1016/S0032-3861(96)00777-X
  21. D. R. Paul and L. M. Robeson, "Polymer nanotechnology: Nanocomposites," Polymer, Vol. 49, pp. 3187-3204, 2008. https://doi.org/10.1016/j.polymer.2008.04.017
  22. H. S. Park, D. H. Ha, and S. S. Kim, "Development of PPS composite materials as Polyolefin Blend for Worm Wheel," KSAE2011 Annual Conference, pp. 2523-2529, 2011.