DOI QR코드

DOI QR Code

THE CURVATURE OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE

  • Jin, Dae Ho (Department of Mathematics, Dongguk University)
  • 투고 : 2012.06.07
  • 심사 : 2012.10.25
  • 발행 : 2012.11.30

초록

We study half lightlike submanifolds M of semi-Riemannian manifolds $\widetilde{M}$ of quasi-constant curvatures. The main result is a characterization theorem for screen homothetic Einstein half lightlike submanifolds of a Lorentzian manifold of quasi-constant curvature subject to the conditions; (1) the curvature vector field of $\widetilde{M}$ is tangent to M, and (2) the co-screen distribution is a conformal Killing one.

키워드

참고문헌

  1. B.Y. Chen & K. Yano: Hypersurfaces of a conformally flat space. Tensor (N. S.) 26 (1972), 318-322.
  2. K.L. Duggal & A. Bejancu: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Acad. Publishers, Dordrecht, 1996.
  3. K.L. Duggal & D.H. Jin: Half-lightlike submanifolds of codimension 2. Math. J. Toyama Univ. 22 (1999), 121-161.
  4. K.L. Duggal & D.H. Jin: Null curves and Hypersurfaces of Semi-Riemannian Manifolds. World Scientific, 2007.
  5. D.H. Jin: Einstein half lightlike submanifolds with a Killing co-screen distribution. Honam Math. J. 30 (2008), no. 3, 487-504. https://doi.org/10.5831/HMJ.2008.30.3.487
  6. D.H. Jin: Einstein half lightlike submanifolds with special conformalities. accepted in Bull. Korean Math. Soc., 2012.
  7. D.H. Jin: Lightlike hypersurfaces of a semi-Riemannian manifold of quasi-constant curvature. accepted in Commun. Korean Math. Soc., 2011.
  8. D.H. Jin & J.W. Lee: Lightlike submanifolds of a semi-Riemannian manifold of quasi- constant curvature. accepted in J. of Appl. Math., 2012.
  9. D.N. Kupeli: Singular Semi-Riemannian Geometry. Mathematics and Its Applications, vol. 366, Kluwer Acad. Publishers, Dordrecht, 1996.