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Abstract
The effects of inorganic mercury on hematological parameters and hepatic oxidative stress enzyme activity were studied in olive 
flounder Paralichthys olivaceus. Fish were injected twice intraperitoneally with mercuric chloride (2, 4, or 8 mg Hg/kg BW). The 
major hematological findings were significant decreases in the red blood cell count, hematocrit value, and hemoglobin level in 
olive flounder exposed to 8 mg Hg/kg BW. Remarkably low levels of calcium and chloride, and reduced osmolality, were also 
observed at 8 mg Hg/kg BW. In hepatic tissue, significant increases in glutathione peroxidase and catalase activity were observed 
above 4 mg Hg/kg BW Inorganic mercury also increased glutathione S-transferase and glutathione reductase activity at 8 mg Hg/
kg BW in hepatic tissue. The present findings suggest that exposure to a low concentration (≥4 mg Hg/kg BW) of inorganic mer-
cury can cause significant changes in hematological and antioxidant parameters.    
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Introduction 

Toxic heavy metals are increasingly being released into 
the environment as a result of industrialization. Mercury is 
a nonessential element that can have severe, toxic effects on 
aquatic animals when present in excessive amounts (Nriagu 
and Pacyna, 1988; Fitzgerald and Clarkson, 1991). Most of 
the mercury in water, sediments, or the biota is in the form of 
inorganic mercury salts or organic forms. Mercury has always 
been present at varying levels in environmental media and the 
biota, and all mercury is, in a sense, naturally occurring; that 
is, mercury is not a substance of human origin. Anthropogenic 
activities are thought to redistribute mercury from its original 
matrix through the atmosphere to other environmental media. 
Numerous studies have shown that the amount of mercury 
being deposited from the atmosphere has increased since the 
onset of the industrial age (Johansson et al., 1991; Nater and 
Grigal, 1992; Swain et al., 1992). Some mercury deposits arise 

from natural sources while others are derived from anthropo-
genic activities. 

The absorption, distribution, metabolism, and excretion of 
mercury depend on its form and oxidation state (Goyer, 1991). 
Organic mercurials are more readily absorbed than inorganic 
forms. An oxidation-reduction cycle is involved in the me-
tabolism of mercury and its compounds in animals, including 
humans. Mercury poisoning causes necrosis in epithelial cells, 
epithelial hyperplasia, and Na+-K+ ATPase inhibition in fishes 
(Bouquegneau, 1977; Lock et al., 1981). During early embry-
onic development in zebrafish, elevated mercury levels cause 
reduced survival time and increased hatching time (Dave and 
Xiu, 1991). The tissue distribution of inorganic mercury in 
fishes varies with the route of administration (water, oral, and 
intraperitoneal); however, the liver and kidneys tend to accu-
mulate the highest quantity of this metal overall (Weisbart, 
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an equal volume of PBS. Blood and hepatic tissue samples 
were taken to examine several hematological and antioxidant 
parameters at 1 and 2 weeks post injection.       

Hematological parameter analysis 

Blood samples were collected within 35-40 s through the 
caudal vein of the fish in 0.5-mL disposable heparinized sy-
ringes using a 30-gauge needle. The syringes were kept at 4°C 
until the blood parameters were completely studied. The total 
red blood cell (RBC) count, hemoglobin (Hb) concentration, 
and hematocrit (Ht) value were determined immediately. The 
blood samples were centrifuged to separate erythrocytes from 
serum at 3,000 g for 15 min at 4°C. Total RBC counts were 
made according to Klontz (1979) using modified Yokoyama 
diluting fluid and a Spencer Bright-Line hemocytometer. The 
Hb concentration was determined using the Drabkin and Aus-
tin cyanmethemoglobin technique (Kit 525; Sigma). The Ht 
value was determined by the microhematocrit centrifugation 
technique. The serum samples were analyzed for inorganic 
phosphorus by the ultraviolet method (Kit 360; Sigma) and for 
calcium (Kit 588; Sigma), magnesium (Kit 595; Sigma), and 
chloride (Kit 461; Sigma) by the colorimetric method. Plasma 
osmolality was measured directly using 20 μL of sample on a 
Micro-Osmometer (Model 3300; Advanced Instruments, Inc., 
Norwood, MA, USA). 

Antioxidant enzyme analysis 

Liver tissues were excised and homogenized with 5 vol-
umes of ice-cold homogenization buffer (50 mM Tris, pH 7.5, 
1 mM EDTA, 1 mM DL-dithiothreitol, and 150 mM NaCl) 
with several strokes using a Teflon pestle (099CK4424; Glas-
Col, Terre Haute, IN, USA). The homogenate was centrifuged 
at 12,000 g for 20 min under refrigeration and the obtained su-
pernatants were stored at -80°C for analysis. Glutathione per-
oxidase (GPx) activity was measured according to the method 
of Paglia and Valentine (1967) using cumene hydroperoxide 
as the substrate. To measure glutathione-S-transferase (GST) 
activity, the 1-chloro-2,4-dinitrobenzene (CDNB) method was 
used (Habig et al., 1974). Glutathione reductase (GR) activity 
was assessed by monitoring the oxidation of NADPH initiated 
by oxidized glutathione addition at 37°C (Cribb et al., 1989). 
Catalase (CAT) activity was measured as described by Johans-
son and Borg (1988). 

Statistics  

Statistical analyses were performed using the SPSS/PC+ 
statistical package (SPSS Inc., Chicago, IL, USA). Significant 
differences between groups were identified using one-way 
ANOVA and Duncan’s test for multiple comparisons or Stu-
dent’s t-test for two groups (Duncan, 1955). The significance 
level was set at P < 0.05. 

1973). Nevertheless, data on oxidative stress due to mercury 
exposure are lacking in fish. 

Therefore, the objective of this study was to evaluate the 
effects of inorganic mercury delivered via an intraperitoneal 
injection on hematological parameters and hepatic antioxidant 
enzyme activity in olive flounder Paralichthys olivaceus. 

Materials and Methods  

Experimental fish 

Olive flounders Paralichthys olivaceus were obtained from 
a local fish farm on Jeju Island, Korea. The fish were acclima-
tized for 3 weeks under laboratory conditions and their health 
status was evaluated prior to mercury exposure (Table 1). Dur-
ing the acclimation period, the fish were fed a commercial diet 
twice daily and maintained on a 12-h:12-h light/dark cycle at 
all times. After acclimatization, several fish (body length, 19.3 
± 1.2; body weight [BW], 53 ± 2.9 g) were selected for further 
study.             

Exposure conditions  

Mercury exposure took place in 0.5-ton fiberglass-rein-
forced plastic tanks containing 25 fish per treatment group. 
Each tank received a flow of 7 L min-1 with continuous aera-
tion. Mercury(II) chloride (Sigma, St. Louis, MO, USA) was 
dissolved in phosphate-buffered saline (PBS) immediately be-
fore intraperitoneal injection. The fish were injected with 2, 
4, or 8 mg Hg/kg BW as mercury chloride. The first injection 
was given 3 weeks after acclimatization; the second was given 
1 week after the first treatment. The control group was sub-
jected to the same regimen; however, they were injected with 

Table 1. Chemical components of seawater used in the acclimation 
period of olive flounder Paralichthys olivaceus 

     Parameter Value 

Temperature (°C) 18.21 ± 0.30 

pH   8.10 ± 0.23 

Salinity (‰) 31.82 ± 0.52 

Ammonia (μg-at/L) 13.65 ± 1.34 

Nitrite (μg-at/L)   2.28 ± 0.26 

Nitrate (μg-at/L)   9.82 ± 1.12 

Phosphate (μg-at/L)   6.42 ± 0.78 

SS (mg/L)   4.84 ± 0.18 

DO (mg/L)   6.95 ± 0.43 

COD (mg/L)   1.08 ± 0.04 



Kim et al. (2012)    Effect of Inorganic Mercury on Paralichthys olivaceus

217 http://e-fas.org

magnesium among the treatment groups. However, a clear de-
creasing trend was noted in serum calcium and chloride at 8 
and ≥4 mg Hg/kg BW, respectively, compared to the controls 
after 2 weeks (P<0.05). The control group maintained a nor-
mal blood osmolality (between 242 and 248 mOsm/kg). How-
ever, at 1 and 2 weeks, the blood osmolality in the fish exposed 
to >4 mg Hg/kg BW had significantly decreased compared to 
the controls (P < 0.05).        

Antioxidant enzymes 

The hepatic GPx, GST, GR, and CAT activity levels in fish 
exposed to inorganic mercury are presented in Fig. 1. GPx, 
GST, GR, and CAT activity in olive flounders treated with 
inorganic mercury at a concentration of >2 mg Hg/kg BW in-
creased in a dose- and time-dependent manner. GPx and CAT 
activity in olive flounders exposed to inorganic mercury at 
concentrations ≥4 mg Hg/kg BW increased significantly com-
pared to the controls after 2 weeks (P < 0.05). A significant in-

Results   

Hematological properties 

The RBC count, Hb concentration, and Ht value of olive 
flounders exposed to different levels of inorganic mercury 
are summarized in Table 2. The major hematological findings 
were a significant decrease in the RBC count and Hb concen-
tration in olive flounders exposed to >4 mg Hg/kg BW com-
pared with the control group after 2 weeks (P < 0.05). The Ht 
value following inorganic mercury exposure for 2 weeks was 
also decreased in fish administered 8 mg Hg/kg BW compared 
with the control group (P < 0.05). 

Inorganic components     

The blood serum inorganic components of olive flounder 
treated with inorganic mercury are shown in Table 3. No sig-
nificant differences were observed in serum phosphorous or 

Table 3. Inorganic components and osmolality of olive flounder Paralichthys olivaceus exposed to various inorganic mercury concentrations 

Inorganic
   components 

Exposure
period (week) 

Mercury dose (mg Hg/kg BW) 

0 2 4 8 

Phosphorous (mmol/L) 1
2 

2.52 ± 0.15a

2.56 ± 0.28a 
2.43 ± 0.09a

2.62 ± 0.21a 
2.58 ± 0.09a

2.38 ± 0.35a 
2.47 ± 0.12a

2.42 ± 0.16a 

Calcium (mmol/L) 1
2 

2.72 ± 0.12a

2.69 ± 0.25a 
2.80 ± 0.37a

2.76 ± 0.25a 
2.63 ± 0.14a

 2.32 ± 0.21ab 
2.03 ± 0.11b

 1.93 ± 0.22b 

Magnesium (mmol/L) 1
2 

1.45 ± 0.15a

1.62 ± 0.23a 
1.56 ± 0.30a

1.49 ± 0.25a 
1.67 ± 0.22a

1.58 ± 0.19a 
1.51 ± 0.16a

1.48 ± 0.32a 

Chloride (mmol/L) 1
2 

139.2 ± 4.8a

141.4 ± 7.2a 
136.3 ± 5.3a

134.8 ± 4.6a 
129.7 ± 5.8ab

122.2 ± 4.2bc 
       123.5 ± 5.4bc

        117.6 ± 4.6c 

Osmol (mOsm/kg) 1
2 

242.6 ± 7.5a

248.4 ± 8.3a 
245.6 ± 6.5a

 234.4 ± 7.2ab 
        226.6 ± 4.5b

218.4 ± 6.4bc 
        203.6 ± 6.3c

        199.4 ± 5.6c 

All data are expressed as mean ± SE. Values with different superscripts in each organic components are significantly differences (P < 0.05) as determined by 
Duncan's multiple range test. 

Table 2. Hematological parameters of olive flounder Paralichthys olivaceus exposed to the various inorganic mercury concentrations 

Hematological
   parameters 

Exposure
period (week) 

Mercury dose (mg Hg/kg BW) 

0 2 4 8 

RBC count (× 104/mm3) 1
2 

152.5 ± 5.1a

147.3 ± 4.2a 
148.2 ± 6.9a

150.5 ± 4.1a 
141.6 ± 7.5ab

         136.4 ± 5.5b 
134.8 ± 4.2b

129.2 ± 3.7b 

Hb (g/dL) 1
2 

    9.4 ± 0.9a

    9.6 ± 0.7a 
    9.8 ± 1.1a

     8.7 ± 1.2ab 
    7.9 ± 0.6ab

    7.1 ± 0.5bc 
     6.8 ± 1.0bc

    5.9 ± 0.9c 

Ht (%) 1
2 

  18.1 ± 2.1a

  17.7 ± 1.8a 
  17.1 ± 1.4a

  16.5 ± 1.2a 
  15.7 ± 0.9ab

  15.1 ± 1.6ab 
  14.1 ± 1.1b

  13.7 ± 0.8b 

All data are expressed as mean ± SE. Values with different superscripts in each parameter are significantly differences (P < 0.05) as determined by Duncan's 
multiple range test. RBC, red blood cell count; Hb, hemoglobin; Ht, hematocrit. 
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mia in fish by inhibiting Hb synthesis and shortening the life 
span of circulating erythrocytes (Houston et al., 1993). These 
results are in accordance with those of mercury-exposed Di-
centrarchus labrax (Gwoździński et al., 1992), Oreochromis 
aureus (Allen, 1994), and Aphanius dispar (Hilmy et al., 
1980), which exhibited higher mercury concentration-induced 
anemia. Our studies provide evidence that inorganic mercury 
affects hemolysis. The observed decline in RBC count, Hb 
concentration, and Ht presumably reflect hemolysis and/or ir-
reparable damage to gill morphology and function (Gupta and 
Dua, 2002). 

No significant differences in serum phosphorous or mag-
nesium were detected among the treatment groups. However, 
a significant decrease in calcium and chloride was observed 
at 8 and ≥4 mg Hg/kg BW, respectively, at 2 weeks. Previous 
laboratory studies have documented the inhibitory effects of 
various metals on gill function in fish (Evans, 1987; Watson 
and Benson, 1987). Indeed, the gills of freshwater teleosts 
function as the primary site for the active absorption of ions 

crease in GST activity was observed at 8 mg Hg/kg BW after 
2 weeks (P < 0.05). GR activity also increased at 8 mg Hg/kg 
BW after 1 week (P < 0.05).   

Discussion      

The blood properties of fish are suitable biomarkers for 
evaluating the potential risk of chemicals (Roche and Bogé, 
1996). Past investigators have identified changes in several 
hematological variables as indicators of heavy metal exposure 
(Cyriac et al., 1989). The predominant hematological findings 
in this study were a significant decrease in the RBC count and 
Hb concentration in olive flounders exposed to inorganic mer-
cury at >4 mg Hg/kg BW. The Ht value in fish following inor-
ganic mercury exposure to 8 mg Hg/kg BW for 2 weeks also 
decreased. Chronic exposure of fish to heavy metals causes 
serve reductions in the RBC count, Ht, and Hb concentration 
(Tewari et al., 1987). Mercury has been shown to cause ane-

Fig. 1. Variations of glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) and catalase (CAT) activities in the liver 
of olive flounder Paralichthys olivaceus exposed to the various inorganic mercury concentrations. All data are expressed as mean ± SE. Different letters 
indicates significant differences (P<0.05) between the groups. 
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H2O2 and to be responsible for the reduction of lipid hydroper-
oxides. Therefore, it is hypothesized that this enzyme protects 
tissue against oxidative damage due to lipid peroxidation. The 
liver is a major site of detoxification and the first target of in-
gested oxidants; thus, it is considered to be an important tissue 
in the study of the protective role of GPx in lipid peroxidation. 
CAT occurs primarily in peroxisomes. Its activity increased 
together with other peroxisomal enzymes in fish liver upon 
exposure to bleached kraft mill effluents, suggesting the in-
duction of peroxisome proliferation (Mather-Mihaich and Di 
Giulio, 1991). Some pollutants may inhibit CAT activity. High 
concentrations of copper were shown to inhibit CAT activity 
in liver, gill, and muscle; a similar effect was induced by 100 
ppm of ZnSO4 in gill and muscle (Radi and Matkovics, 1988). 

We conclude that exposure to a low concentration (≥4 
mg Hg/kg BW) of inorganic mercury resulted in significant 
changes in several hematological and antioxidant parameters.  
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