DOI QR코드

DOI QR Code

ANALYSIS OF NECKING DEFORMATION AND FRACTURE CHARACTERISTICS OF IRRADIATED A533B RPV STEEL

  • Kim, Jin Weon (Department of Nuclear Engineering, Chosun University) ;
  • Byun, Thak Sang (Oak Ridge National Laboratory, Material Science and Technology Division)
  • Received : 2012.02.15
  • Accepted : 2012.03.23
  • Published : 2012.12.25

Abstract

This paper reports the irradiation effect on the deformation behavior and tensile fracture properties of A533B RPV steel. An inverse identification technique using iterative finite element (FE) simulation was used to determine those properties from tensile data for the A533B RPV steel irradiated at 65 to $100^{\circ}C$ and deformed at room temperature. FE simulation revealed that the plastic instability at yield followed by softening for higher doses was related to the occurrence of localized necking immediately after yielding. The strain-hardening rate in the equivalent true stress-true strain relationship was still positive during the necking deformation. The tensile fracture stress was less dependent on the irradiation dose, whereas the tensile fracture strain and fracture energy decreased with increasing dose level up to 0.1 dpa and then became saturated. However, the tensile fracture strain and fracture energy still remained high after high-dose irradiation, which is associated with a large amount of ductility during the necking deformation for irradiated A533B RPV steel.

Keywords

References

  1. Y. Dai, G. W. Egeland, and B. Long, "Tensile Properties of Ferritic/Martensitic Steels Irradiated in STIP-I," J. Nucl. Mater., Vol. 377, pp. 115-121 (2008). https://doi.org/10.1016/j.jnucmat.2008.02.036
  2. J. E. Pawel, A. F. Rowcliffe, G. E. Lucas, and S. J. Zinkle, "Irradiation Performance of Stainless Steels for ITER Application," J. Nucl. Mater., Vol.239, pp.126-131 (1996). https://doi.org/10.1016/S0022-3115(96)00484-9
  3. K. Farrell and T. S. Byun, "Tensile Properties of Candidate SNS Target Container Materials after Proton and Neutron Irradiation in the LANCE Accelerator," J. Nucl. Mater., Vol. 296, pp. 129-138 (2001). https://doi.org/10.1016/S0022-3115(01)00515-3
  4. K. Farrell, T. S. Byun, and N. Hashimoto, "Deformation Mode Maps for Tensile Deformation of Neutron-Irradiated Structural Alloys," J. Nucl. Mater., Vol. 335, pp. 471-486 (2004). https://doi.org/10.1016/j.jnucmat.2004.08.006
  5. K. Farrell and T.S. Byun, "Tensile Properties of Ferritic/ Martensitic Steels Irradiated in HFIR, and Comparison with Spallation Irradiation Data," J. Nucl. Mater., Vol. 318, pp. 274-282 (2003). https://doi.org/10.1016/S0022-3115(03)00102-8
  6. M. Matijasevic, E. Lucon, and A. Almazouzi, "Behavior of Ferritic/Martensitic Steels after n-irradiation at 200 and 300 ${^{\circ}C}$," J. Nucl. Mater., Vol. 377, pp. 101-108 (2008). https://doi.org/10.1016/j.jnucmat.2008.02.063
  7. T. S. Byun, K. Farrell, E. H. Lee, J. D. Hunn, and L. K. Mansur, "Strain Hardening and Plastic Instability Properties of Austenitic Stainless Steels after Proton and Neutron Irradiation," J. Nucl. Mater., Vol. 298, pp. 269-279 (2001). https://doi.org/10.1016/S0022-3115(01)00651-1
  8. Y. Dai, G. W. Egeland, and B. Long, "Tensile Properties of EC316LN Irradiated in SINQ to 20 dpa," J. Nucl. Mater., Vol. 377, pp. 109-114 (2008). https://doi.org/10.1016/j.jnucmat.2008.02.035
  9. B. V. Cockeram, R. W. Smith, and L. L. Snead, "The Influence of Fast Neutron Irradiation and Irradiation Temperature on the Tensile Properties of Wrought LCAC and TZM Molybdenum," J. Nucl. Mater., Vol. 346, pp. 145-164 (2005). https://doi.org/10.1016/j.jnucmat.2005.06.016
  10. T. S. Byun and K. Farrell, "Irradiation Hardening Behavior of Polycrystalline Metals after Low Temperature Irradiation," J. Nucl. Mater., Vol. 326, pp. 86-96 (2004). https://doi.org/10.1016/j.jnucmat.2003.12.012
  11. T. S. Byun, "Dose Dependence of True Stress Parameters in Irradiated BCC, FCC, and HCP Metals," J. Nucl. Mater., Vol. 361, pp. 239-247(2007). https://doi.org/10.1016/j.jnucmat.2006.12.014
  12. T. S. Byun and K. Farrell, "Plastic Instability in Polycrystalline Metals after Low Temperature Irradiation," Acta Mater., Vol. 52, pp. 1597-1608 (2004). https://doi.org/10.1016/j.actamat.2003.12.023
  13. T. S. Byun, K. Farrell, and M. Li, "Deformation in Metals after Low-temperature Irradiation: Part I - Mapping Macroscopic Deformation Modes on True Stress-Dose Plane," Acta Mater., Vol. 56, pp. 1044-1055 (2008). https://doi.org/10.1016/j.actamat.2007.10.061
  14. T. S. Byun, K. Farrell, and M. Li, "Deformation in Metals after Low-temperature Irradiation: Part II - Irradiation Hardening, Strain Hardening, and Stress Ratios," Acta Mater., Vol. 56, pp. 1056-1064 (2008). https://doi.org/10.1016/j.actamat.2007.10.056
  15. I. V. van Osch and M. I. de Vries, "Irradiation Hardening of V-4Cr-4Ti," J. Nucl. Mater., Vol. 271 & 272, pp. 162-166 (1999). https://doi.org/10.1016/S0022-3115(98)00704-1
  16. J. W. Kim and T. S. Byun, "Analysis of Tensile Deformation and Failure in Austenitic Stainless Steels: Part I - Temperature Dependence," J. Nucl. Mater., Vol. 396, pp. 1-9 (2010). https://doi.org/10.1016/j.jnucmat.2009.08.010
  17. J. W. Kim and T. S. Byun, "Analysis of Tensile Deformation and Failure in Austenitic Stainless Steels: Part II - Irradiation Dose Dependence," J. Nucl. Mater., Vol. 396, pp. 10-19 (2010). https://doi.org/10.1016/j.jnucmat.2009.08.009
  18. Y. Bao, "Dependence of Ductile Crack Formation in Tensile Tests on Stress Triaxiality, Stress and Strain Ratios," Eng. Fract. Mech., Vol. 72, Vol. 502-522 (2005).
  19. Y. Ling, "Uniaxial True Stress-Strain after Necking," AMP J. Tech., Vol. 51, pp. 37-48 (1996).
  20. C. K. Oh, Y. J. Kim, J.H. Baek, and W. S. Kim, "Development of Stress-modified Fracture Strain for Ductile Failure of API X65 Steel," Int. J. Fract., Vol. 143, pp. 119-133 (2007). https://doi.org/10.1007/s10704-006-9036-3
  21. M. Joun, J. G. Eom, and M. C. Lee, "A New Method for Acquiring True Stress - Strain Curves over a Large Range of Strains using a Tensile Test and Finite Element Method," Mech. Mater., Vol. 40, pp. 586-593 (2008). https://doi.org/10.1016/j.mechmat.2007.11.006
  22. Hibbitt, Karlson, and Sorensen Inc., 2010, ABAQUS Ver. 6.9 User's Manual.
  23. P. Koc and B. Stok, "Computer-aided Identification of the Yield Curve of a Sheet Metal after Onset of Necking," Comp. Mater. Sci., Vol. 31, pp. 155-168 (2004). https://doi.org/10.1016/j.commatsci.2004.02.004
  24. Dieter, G.E., Mechanical Metallurgy, SI Metric Ed., McGraw-Hill, Inc.(1988)
  25. G. R. Odette, M. Y. He, E. G. Donahue, and G. E. Lucas, "On the Relation between Engineering Load-displacement Curves and True Stress Strain Behavior in Tests on Flat Tensile Specimens," Small Specimen Test technique: Fourth Volume, ASTM STP 1418, Sokolov M, Landes J, Lucas G, ASTM International, West Conshohocken, PA, pp. 221-231 (2002).
  26. K. Shiba and T. Hirose, "Deformation Behavior of Reduced Activation Ferritic Steel during Tensile Test," Fus. Eng. Des., Vol. 81, pp. 1051-1055 (2006). https://doi.org/10.1016/j.fusengdes.2005.07.030