DOI QR코드

DOI QR Code

Study on Bullet-Proof Performance of Multi-Layered Hybrid Armor Against 9mm FMJ Projectile

9mm 권총탄 위협을 받는 적층구조의 방탄성능 연구

  • Lee, Jong-Gu (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Siho (Technical Engineering Division, Air Force Logistics Command) ;
  • Kim, Gunin (Weapon Science, Korea Military Academy) ;
  • Cho, Maenghyo (School of Mechanical and Aerospace Engineering, Seoul National University)
  • 이종구 (서울대학교 기계항공공학부) ;
  • 김시호 (공군군수사령부) ;
  • 김건인 (육군사관학교 무기기계공학과) ;
  • 조맹효 (서울대학교 기계항공공학부)
  • Received : 2012.11.05
  • Accepted : 2012.12.10
  • Published : 2012.12.31

Abstract

In order to prevent the high velocity bullet from penetration, aluminum alloy and RHA(Rolled Homogeneous Armour) steel, which have a high tensile and compressive strength, are usually used as the bullet-proof armor material. Although these materials have a good bullet proof performance, but not an area density which is a weight increasing factor of bullet-proof armor. Therefore, Mg(magnesium) alloy is a promising substitute for the traditional bullet-proof armor material due to the relatively low areal density. The spatial efficiency of Mg alloy, however, is inferior to the traditional material's, which is a volume(thickness) increasing factor of bullet-proof armor. In this study, we select the multi-layered hybrid armor which consist of Ceramic, with a high strength; Mg alloy, with a low areal density; Kevlar, with a high tensile strength-to-weight ratio; in order to make up for the poor spatial efficiency of Mg alloy. By predicting V50 of the multi-layered armor against 9mm FMJ(Full Metal Jarket). we show that the multi-layered armor have the capability in improving bullet-proof performance in the respect of the areal density, but also the spatial efficiency.

고속의 탄을 방호하기 위해 전통적으로 알루미늄 합금, RHA(Rolled Homogeneous Armour) 강과 같이 인장 및 압축 강도가 큰 금속이 주로 방탄재료로 사용되었다. 이런 전통적인 방탄재료는 우수한 방탄성능을 가지는 반면, 면 밀도가 커서 방탄 장갑의 무게를 증가시키는 요인이 된다. 때문에 작은 면 밀도를 가질 뿐만 아니라 큰 비강도를 가지는 마그네슘합금이 전통적인 방탄재료의 대체제로 평가받고 있다. 하지만 전통적인 방탄재료에 비해 마그네슘합금의 공간 효율이 떨어져 장갑의 두께 혹은 부피를 증가시키는 요인이 된다. 본 연구에서는 마그네슘합금의 공간 효율의 개선을 위해 마그네슘합금 단일물질이 아닌 세라믹(Ceramic), 마그네슘합금(Mg alloy), 케블라(Kevlar)를 순서대로 적층한 하이브리드 장갑모델을 선정하였고, 9mm FMJ(Full Metal Jarket) 탄 위협에 대한 방탄해석을 통해 하이브리드 장갑이 방탄성능 척도인 면밀도를 감소시킬 뿐만 아니라 공간효율도 개선시킴을 보였다.

Keywords

References

  1. Kim, S., Kim, G,. Cho, M. (2009) Experiment Test and Numerical Sumulation of Ballisitic Impact on Magnesium plates, Conference on the Korean Society for Aeronautical and Space Science, The Korean Society for Aeronautical and Space Science, pp.178 ∼181.
  2. Borvik, T., Dey, S., Clausen, A.H. (2009) Perforation Resistance of Five Different High Strength Steel Plates subjected to Small Arms Projectile, International Journal of Impact Engineering, 36(7), pp.948 ∼964 https://doi.org/10.1016/j.ijimpeng.2008.12.003
  3. Demir, T., Ubeyli, M., Yıldırım, R.O. (2008) Investigation on the Ballistic Impact Behavior of Various Alloys against 7.62mm Armor Piercing Projectile, Materials & Design, 29(10), pp.2009-2016. https://doi.org/10.1016/j.matdes.2008.04.010
  4. Dhua, S.K., Ray, A., Sarma, D.S. (2001) Effect of Tempering Temperatures on the Mechanical Properties and Microstructures of HSLA-100 Type Copper Bearing Steels, Materials Science and Engineering: A, 318, pp.197-210. https://doi.org/10.1016/S0921-5093(01)01259-X
  5. Dikshit, S.N., Kutumbarao, V.V., Sundararajan, G. (1995) The Influence of Plate Hardness on the Ballistic Penetration of Thick Steel Plates, International Journal of Impact Engineering, 16(2), pp.293-320. https://doi.org/10.1016/0734-743X(94)00041-T
  6. Dikshit, S.N. (1998) Ballistic Behavior of Thick Steel Armour Plate under Oblique Impact: Experimental Investigation, Defence Science Journal, 48(3), pp. 257-262. https://doi.org/10.14429/dsj.48.3945
  7. Gingold, R.A., Monagan, J.J. (1997). Smoothed Particle Hydrodynamics: Theory and Application to Non-spehrical star, Monthly Notices of the Royal Astronomical Society, 181, pp.375-389.
  8. Goldsmith, W., Finnegan, A. (1986) Normal and Oblique Impact of Cylindro-Conical and Cylindrical Projectiles on Metallic Plates, International Journal of Impact Engineering, 4(2), pp.83-105. https://doi.org/10.1016/0734-743X(86)90010-2
  9. Jena, P.K., Ramanjeneyulu, K., Sivakumar, K, Bhat, T.B. (2009) Ballistic Studies on Layered Structures, Materials & Design, 30(12), pp.1922-1929. https://doi.org/10.1016/j.matdes.2008.09.008
  10. Jena, P.K., Mishra, B., Babu, M.R., Babu, A., Singh, A.K., Sivakuma, K., Bhat, T.B. (2010) Effect of Heat Treatment on Mechanical and Ballistic Properties of a High Strength Armour Steel, International Journal of Impact Engineering, 37(3), pp.242-249. https://doi.org/10.1016/j.ijimpeng.2009.09.003
  11. Johson, G.R., Cook, W.F. (1983) A Constitutive Model and Data for Metals subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of Seventh International Sympo- Sium on Ballistic, Hague, Netherlands, pp.7.
  12. Jones, T.L., DeLorme, R.D., Burkins, M.S., Gooch, W.A. (2007) Ballistic Performance of Magnesium Alloy AZ31B, 23ed Internatinal Symposium on Ballistic, TARRAGONA, SPAIN, pp.989-995.
  13. Lee, W.S., Su, T.T. (1999) Mechanical Properties and Microstructural Features of AISI 4340 High Strength Alloy Steel under Quenched and Tempered Conditions, Journal of Materials Processing Technology, 87, pp.198-206. https://doi.org/10.1016/S0924-0136(98)00351-3
  14. Lim, C.T., Shim, V.P.W., Ng, Y.H. (2003). Finite Element Modeling of the Ballistic Impact of Fabric Armor, International Journal of Impact Engineering, 28(1), pp.13-31. https://doi.org/10.1016/S0734-743X(02)00031-3
  15. Moon, J.J., Kim, S.J., Lee, M. (2009). Parallel Computing Strategies for High-Speed Impact into Ceramic/Metal Plate, Journal of the Computational Structural Engineering, 22(6), pp.527-532.
  16. Orphal, D.L. (1998) Highly Oblique Impact and Penetration of Thin Targets by Steel Spheres, International Journal of Impact Engineering, 1(2), pp.687-698.
  17. Ray, P.K., Ganguly, R.I., Arkadi, G., Panda, A.K. (2003) Optimization of Mechanical Properties of an HSLA-100 steel through Control of Heat Treatment Variables, Materials Science and Engineering: A, 346, pp.122-131. https://doi.org/10.1016/S0921-5093(02)00526-9
  18. Srivastava, A.K., Jha, G., Gope, N., Singh, S.B. (2006) Effect of Heat Treatment on Microstructure and Mechanical Properties of Cold Rolled C-Mn-Si Trip Aided Steel, Materials Characterization, 57(2), pp.127-135. https://doi.org/10.1016/j.matchar.2006.01.010
  19. Sundararajan, G. (1990) The Energy Absorbed During the Oblique Impact of a Hard Ball against Ductile Target Materials, International Journal of Impact Engineering, 9(3), pp.343-358. https://doi.org/10.1016/0734-743X(90)90007-I
  20. Tham, C.Y., Tan, V.B.C., Lee, H.P. (2008) Ballistic Impact of A KEVLAR Helmet : Experiment and Simulations, International Journal of Impact Engineering, 35(5), pp.304-318. https://doi.org/10.1016/j.ijimpeng.2007.03.008
  21. U.S. Army Reasearch Laboratory. (1997) V50 Ballistic Test for Armor, MILSTD-662F, Aberdeen Proving Ground, pp.23.