DOI QR코드

DOI QR Code

Improvement of Jensen's Inequality in terms of Gâteaux Derivatives for Convex Functions in Linear Spaces with Applications

  • Received : 2011.09.02
  • Accepted : 2012.08.22
  • Published : 2012.12.23

Abstract

In this paper, we prove some inequalities in terms of G$\hat{a}$teaux derivatives for convex functions defined on linear spaces and also give improvement of Jensen's inequality. Furthermore, we give applications for norms, mean $f$-deviations and $f$-divergence measures.

Keywords

References

  1. M. Adil Khan, M. Anwar, J. Jaksetic and J. Pecaric, On some improvements of the Jensen inequality with some applications, J. Inequal. and Appl., (2009), Article ID 323615, 15 pages.
  2. M. Anwar, S. Hussain and J. Pecaric, Some inequalities for Csiszar-divergence measures, Int. J. Math. Anal., 3(26)(2009), 1295-1304.
  3. I. Csiszar, Information-type measures of difference of probability distributions and indirect observations, Studia Math. Hungarica, 2(1967), 299-318.
  4. I. Csiszar and J. Korner, Information theory: Coding Theorem for Dicsrete Memoryless systems, Academic Press, New York, 1981.
  5. S. S. Dragomir, An improvement of Jensen's inequality, Bull. Math. Soc. Sci. Math. Roumanie, 34(82)(1990), 291-296.
  6. S. S. Dragomir, Some refinements of Ky Fan's inequality, J. Math. Anal. Appl., 163(2)(1992), 317-321. https://doi.org/10.1016/0022-247X(92)90254-B
  7. S. S. Dragomir, Some refinements of Jensen's inequality, J. Math. Anal. Appl., 168(2)(1992), 518-522. https://doi.org/10.1016/0022-247X(92)90177-F
  8. S. S. Dragomir, A further improvement of Jensen's inequality, Tamkang J. Math., 25(1)(1994), 29-36.
  9. S. S. Dragomir, Inequalities in terms of the gateaux derivatives for convex functions on linear spaces with applications, Bulletin of the Australian Mathematical Society, 83(2011), 500-517. https://doi.org/10.1017/S0004972710002054
  10. S. S. Dragomir, Semi-inner Products and Applications, Nova Science Publishers Inc., NY, 2004.
  11. S. S. Dragomir, A new refinement of Jensen's inequality in linear spaces with applications, Mathematical and Computer Modelling, 52(2010), 1497-1505. https://doi.org/10.1016/j.mcm.2010.05.035
  12. S. Hussain, J. Pecaric, An improvement of Jensen's inequality with some applications, Asian European Journal of Mathematics, 2(1)(2009), 85-94. https://doi.org/10.1142/S179355710900008X
  13. J. N. Kapur, A comparative assessment of various measures of directed divergence, Advances in Management Studies, 3(1)(1984), 1-16. https://doi.org/10.2307/3504743
  14. S. Kullback and R. A. Leiber, On information and sufficency, Ann. Math. Statist., 22(1951), 79-86. https://doi.org/10.1214/aoms/1177729694
  15. M. Matic, J. Pecaric, Some companion inequalities to Jensen's inequality, Math. Inequal. Appl., 3(3)(2000), 355-368.
  16. J. Pecaric and S. S. Dragomir, A refinements of Jensen's inequality and applications, Studia Univ. Babes-Bolyai, Mathematica, 24(1)(1989), 15-19.
  17. A. Renyi, On measures of entropy and information, Proc. Fourth Berkeley Symp. Math. Stat. and Prob., University of California Press, 1(1961), 547-561.

Cited by

  1. Further Refinements of Jensen’s Type Inequalities for the Function Defined on the Rectangle vol.2013, 2013, https://doi.org/10.1155/2013/214123