DOI QR코드

DOI QR Code

철도 고가교 기둥의 내진성능에 관한 실험적 연구

An Experimental Study of Seismic Retrofit on the Viaduct Bridge of Rail Transit

  • Kim, Jinho (Korea Railroad Research Institute) ;
  • Shin, Hongyoung (Planning & Strategy Department, TESO Engineering Co., Ltd.) ;
  • Park, Yeonjun (Department of Civil Engineering, Suwon University) ;
  • Hur, Jinho (Department of Railway System Engineering, University of Science & Technology)
  • 투고 : 2012.06.15
  • 심사 : 2012.09.28
  • 발행 : 2012.12.31

초록

지진으로 인한 철도 고가교의 심각한 손상이 발생할 경우 구조물의 복구에 필요한 직접적인 손실과 통행제한에 따른 막대한 사회 간접적 손실이 발생한다. 따라서 철도 고가교 구조물은 적절한 내진성능을 확보하여야 하나, 기존 철도 시설에 대한 내진성능평가 결과 다수의 구조물에 대한 내진보강이 필요한 것으로 나타났다. 본 연구에서는 5개의 고가교 기둥 축소모형을 제작하고, 4개의 기둥에 대하여 기존 보강공법의 단점을 개선한 HT-A 복합플레이트로 기둥을 보강하였다. 축력과 반복횡하중을 동시에 가하는 기둥의 실험을 실시하여 강성, 연성 및 에너지 소산능력 등의 내진성능을 평가한 결과 HT-A 복합플레이트로 보강된 철도 고가교 기둥의 향상된 내진성능을 확인하였다.

Earthquake damage of viaduct bridge of railroad may give rise to social loss due to transport restrictions greater than cost of structural recovery. Therefore, viaduct bridge of railroad should have ensure adequate seismic performance. But, results of seismic performance evaluation, many of seismic retrofit was required. In this study, five scale models of columns were made and four of them were reinforced by HT-A(HyperTex & perforate Aluminum) which is improved than existing method. Testing the columns by constant axial load and cyclic lateral displacements, seismic performance of columns has been verified from the result of evaluating the stiffness, ductility and energy dissipation capacity.

키워드

참고문헌

  1. Korea Rail Network Authority, Korea Railroad Research Institute (2004) The Final Report of Seismic Performan-ce Detailed Evaluation and Reinforcement of General Railroad Infrastructures, Korea Rail Network Authority.
  2. C.-H. Chang, K.-S. Jang, K.-H. Kim, C.-H. Joo (2008) Development of Seismic Performance Evaluation Reinforcement by FRP and Ductile Material Layered Composites, 2010 Spring Conference of the Korean Society For Railway, Journal of the Korean Society for Railway, pp. 1486-1491.
  3. F. Colomb, H. Tobbi, E. Perrier, P. Hamelin (2008) Seismic retrofit of reinforced concrete short columns by CFRP materials, Composite Structures, 82, pp. 475-487. https://doi.org/10.1016/j.compstruct.2007.01.028
  4. J. Park, J. Kim, Y. Hong, G. Hong (2007) An Experimental Study on TR-CFT Columns subjected to Axial Force and Cyclic Lateral Loads, Journal of Korean Society of Steel Construction, 4(89), pp. 403-411.
  5. F. Seible, M.J.N. Priestley, G.A. Hegemier, D. Innamorato (1997) Seismic retrofit of RC columns with continuous carbon fiber jackets, Journal of Composites for Construction, 1(2), pp. 52-62. https://doi.org/10.1061/(ASCE)1090-0268(1997)1:2(52)
  6. L. Lam, J.G. Teng, C.H. Cheung, Y. Xiao (2006) FRP-confined concrete under axial cyclic compression, Cement & Concrete Composites, 28, pp. 949-958. https://doi.org/10.1016/j.cemconcomp.2006.07.007
  7. J.-W. Lee, W.-J. Chin, C. Joh, J.-W. Kwark (2010) Seismic Performance of Prefabricated Composite Column for Accelerated Bridge Construction, Journal of the Korean Society for Railway, 13(4), pp. 425-430.
  8. T. Paulay, M.J.N. Priestley (1992) Seismic design of reinforced concrete and masonry buildings, John Wiley & Sons, Inc., USA, pp. 135-142.
  9. J.G. Teng, J.F. Chen, S.T. Smith, L. Lam (2002) FRP-strengthend RC Structures, John Wiley & Sons, Inc., USA, pp. 213- 228.