DOI QR코드

DOI QR Code

Evaluation of the Biogas Productivity Potential of Fish Waste: A Lab Scale Batch Study

  • Kafle, Gopi Krishna (Department of Biosystems Engineering, Kangwon National University) ;
  • Kim, Sang Hun (Department of Biosystems Engineering, Kangwon National University)
  • Received : 2012.08.09
  • Accepted : 2012.10.30
  • Published : 2012.10.31

Abstract

Purpose: The biogas productivity potential of fish waste (FW) was evaluated. Methods: Batch trials were carried out in 1.3 L glass digesters kept in a temperature controlled chambers at $36.5^{\circ}C$. The first order kinetic model and the modified Gompertz model were evaluated for biogas production. The Chen and Hashimoto model was used to determine the critical hydraulic retention time (HRT $_{Critical}$) for FW under mesophilic conditions. The feasibility of co-digestion of FW with animal manure was studied. Results: The biogas and methane potential of FW was found to be 757 and 554 mL/g VS, respectively. The methane content in the biogas produced from FW was found to be 73% and VS removal was found to be 77%. There was smaller difference between measured and predicted biogas production when using the modified Gompertz model (16.5%) than using first order kinetic model (31%). The time period for 80%-90% of biogas production ($T_{80-90}$) from FW was calculated to be 50.3-53.5 days. Similarly, the HRT $_{Critical}$ for FW was calculated to be 13 days under mesophilic conditions. The methane production from swine manure (SM) and cow manure (CM) digesters could be enhanced by 13%-115% and 17%-152% by mixing 10%-90% of FW with SM and CM, respectively. Conclusions: The FW was found to be highly potential substrate for anaerobic digestion for biogas production. The modified Gompertz model could be more appropriate in describing anaerobic digestion process of FW. It could be promising for co-digestion of FW with animal manure.

Keywords

References

  1. AOAC. 1990. Official methods of analysis, 15th ed. Association of Official Analytical Chemists, Washington DC.
  2. APHA. 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Assoc., Washington, DC.
  3. Bhattarai, S., D. H. Kim and J.H. Oh. 2012a. Simulation and model validation of pneumatic conveying drying for wood dust particles. Journal of Biosystems Engineering 37(2):82-89. https://doi.org/10.5307/JBE.2012.37.2.082
  4. Bhattarai, S., J. H. Oh, S. H. Euh, G.K. Kafle and D. H. Kim. 2012b. Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states. Solar Energy Materials and Solar Cells 103:184-193. https://doi.org/10.1016/j.solmat.2012.04.017
  5. Bouallagui, H., H. Lahdheb, E. Ben Romdan, B. Rachdi and M. Hamdi. 2009. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. Journal of Environment Management 90:1844-1849. https://doi.org/10.1016/j.jenvman.2008.12.002
  6. Callaghan, F. J., D. A. J. Wase, K. Thayanithy and C. F. Forster. 1999. Co-digestion of waste organic solids: batch studies. Bioresource Technology 67:117-122. https://doi.org/10.1016/S0960-8524(98)00108-4
  7. Chen, X., R. T. Romano and R. Zhang. 2010. Anaerobic digestion of food wastes for biogas production. International Journal of Agricultural and Biological Engineering 3(4):61-72.
  8. Chen, Y. R. and A. G. Hashimoto. 1978. Kinetics of methane fermentation. Biotechnology Bioengineering Symposium 8:269-282.
  9. Chen, Y. R. and A.G. Hashimoto. 1980. Substrate utilization kinetic model for biological treatment processes. Biotechnology and Bioengineering 22(10):2081-2095. https://doi.org/10.1002/bit.260221008
  10. Cirne, D. G., X. Paloumet, L. Bjornsson, M. M. Alves and B. Mattiasson. 2007. Anaerobic digestion of lipid-rich waste - Effects of lipid concentration. Renewable Energy 32, 965-975. https://doi.org/10.1016/j.renene.2006.04.003
  11. Contois, D. E. 1959. Kinetics of bacterial growth: Relationship between population density and space growth rate of continuous cultures. Journal of General Microbiology 21 (1):40-50. https://doi.org/10.1099/00221287-21-1-40
  12. De Gioannis, G., A. Muntoni, G. Cappai and S. Milia. 2009. Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation constants. Waste Management 29:1026- 1034. https://doi.org/10.1016/j.wasman.2008.08.016
  13. EI-Mashad, H. M. and R. Zhang. 2010. Biogas production from co-digestion of dairy manure and food waste. Bioresource Technology 101:4021-4028. https://doi.org/10.1016/j.biortech.2010.01.027
  14. Eiroa, M., J. C. Costa, M. M. Alves, C. Kennes and M. C. Veiga. 2012. Evaluation of the biomethane potential of solid fish waste. Waste Management 32:1347-1352. https://doi.org/10.1016/j.wasman.2012.03.020
  15. FAO. 2005. Review of the scale of world marine fishery resources. FAO Fisheries Technical Paper.
  16. Fongsatitkul, P., P. Elefsiniotis and D.G. Wareham. 2012. Two-phase anaerobic digestion of the organic fraction of municipal solid waste: estimation of methane production. Waste Management & Research 30(7): 720-726. https://doi.org/10.1177/0734242X11429987
  17. Goring, H. K. and P. J. Van Soet. 1970. Forage fiber analysis. Agric. Handbook. No. 379. ARS. USDA. Washington DC.
  18. Gumisiriza, R., A. M. Mshandete, M. S. T. Rubindamayugi, F. Kansiime and A. K. Kivaisi. 2009. Enhancement of anaerobic digestion of Nile perch fish processing wastewater. African Journal of Biotechnology 8(2): 328-333.
  19. Haug, R. T. 1993. The practical handbook of composting engineering. Ann Arbor, MI: Lewis publisher.
  20. Hayward, G. and V. Pavlicick. 1990. A corrected method for dry matter determination for use in anaerobic digester control. Biological Wastes 34:101-111. https://doi.org/10.1016/0269-7483(90)90011-G
  21. Islam, M. N., K. J. Park and H. S. Yoon. 2012. Methane production potential of food waste and food waste mixture with swine manure in anaerobic digestion. Journal of Biosystems Engineering 37(2):100-105. https://doi.org/10.5307/JBE.2012.37.2.100
  22. Kafle, G. K. and S. H. Kim. 2011. Sludge exchange process on two serial CSTRs anaerobic digestions: Process failure and recovery. Bioresource Technology 102: 6815-6822. https://doi.org/10.1016/j.biortech.2011.04.013
  23. Kafle, G. K., S. H. Kim and K. I. Sung. 2012b. Batch anaerobic co-digestion of Kimchi factory waste silage and swine manure under mesophilic conditions. Bioresource Technology 124:489-494 https://doi.org/10.1016/j.biortech.2012.08.066
  24. Kafle, G. K. and S. H. Kim. 2012. Kinetic study of the anaerobic digestion of swine manure at mesophilic temperature: a lab scale batch operation. Journal of Biosystems Engineering 37(4):233-244. https://doi.org/10.5307/JBE.2012.37.4.233
  25. Kafle, G. K., S. H. Kim and B. S. Shin. 2012a. Anaerobic digestion treatment for the mixture of Chinese cabbage waste juice and swine manure. Journal of Biosystems Engineering 37(1):58-64. https://doi.org/10.5307/JBE.2012.37.1.058
  26. Kaparaju, P. and J. Rintala. 2005. Anaerobic co-digestion of potato tuber and its industrial by-products with pig manure. Resources, Conservation and Recycling 43:175-188. https://doi.org/10.1016/j.resconrec.2004.06.001
  27. Khanal, S. K. 2008. Anaerobic biotechnology for bioenergy production: principles and applications. John Wiley and Sons, Inc. pp. 59.
  28. Kim, J. Y., S. M. Lee and J. H. Lee. 2012. Biogas production from moon jellyfish (Aurelia aurita) using of the anaerobic digestion. Journal of Industrial and Engineering Chemistry 18:2147-2150. https://doi.org/10.1016/j.jiec.2012.06.010
  29. Kim, S. H. and G. K. Kafle. 2010. Effective treatment of swine manure with Chinese cabbage silage through two serial anaerobic digestions. Journal of Biosystems Engineering 35(1):53-62. https://doi.org/10.5307/JBE.2010.35.1.053
  30. Kumar, S., A. N. Mondal, S. A. Gaikward, S. Devotta and R. N. Singh. 2004. Qualitative assessment of methane emission inventory from municipal solid waste disposal sites: a case study. Atmospheric Environment 38: 4921-4929. https://doi.org/10.1016/j.atmosenv.2004.05.052
  31. Lehtomaki, A., S. Huttunen and J. A. Rintala. 2009. Laboratory investigations on co- digestion of energy crops and crop residues with cow manure for methane production: Effect of crop to manure ratio. Resources, Conservation and Recycling 51:591-609.
  32. Li, R., S. Chen and X. Li. 2009. Anaerobic co-digestion of kitchen waste and cattle manure for methane production. Energy Sources, Part A 31:1848-1856. https://doi.org/10.1080/15567030802606038
  33. Li, Y., X. L. Yan, J. P. Fan and J. H. Zhu. 2011. Feasibility of biogas production from anaerobic co-digestion of herbal extraction residues with swine manure. Bioresource Technology 102(11):6458-6463. https://doi.org/10.1016/j.biortech.2011.03.093
  34. Mshandete, A., A. Kivaisi, M. Rubindamayugi and B. Mattiasson. 2004. Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresource Technology 95(1):19-24. https://doi.org/10.1016/j.biortech.2004.01.011
  35. Nges, I. A., B. Mbatia and L. Bjornsson. 2012. Improved utilization of fish waste by anaerobic digestion following omega-3 fatty acids extraction. Journal of Environmental Management 110:159-165. https://doi.org/10.1016/j.jenvman.2012.06.011
  36. Rai, A. K., H. C. Swapna, N. Bhaskar, P. M. Halami and N. M. Sachindra. 2010. Effect of fermentation ensilaging on recovery of oil from fresh water fish viscera. Enzyme and Microbial Technology 46:9-13. https://doi.org/10.1016/j.enzmictec.2009.09.007
  37. Raposo, F., R. Borja, M. A. Martin, A. Martin, M. A. de la Rubia and B. Rincon. 2009. Influence of inoculumsubstrate ratio on the anaerobic digestion of sunflower oil cake in batch mode: process stability and kinetic evaluation. Chemical Engineering Journal 149:70-77. https://doi.org/10.1016/j.cej.2008.10.001
  38. Richards, B. K., R.J. Uummings, T. E. White and W. Jewell. Methods for kinetic analysis of methane fermentation in high solids biomass digesters. 1999. Biomass and Bioenergy 1(2):65-73.
  39. Sievers, D. M. and D. E. Brune. 1978. Carbon/nitrogen ratio and anaerobic digestion of swine waste. Transactions of ASAE 21:537-541. https://doi.org/10.13031/2013.35340
  40. Tosun, I., M. T. Gonullu and A. Gunay. 2004. Anaaerobic digestion and methane generation potential of rose residue in batch reactors. Journal of Environmental Science and Health, Part A 39 (4):915-925. https://doi.org/10.1081/ESE-120028402
  41. VDI 4630. 2006. Fermentation of organic materials: characterization of the substrate, sampling, collection of material data, fermentation tests. In: Verein Deutscher Ingenieure (Ed.), VDI Handbuch Energietechnik, Beuth Verlag GmbH, 10772 Berlin, Germany.
  42. Ward, A. J. and A. K. Loes. 2011. The potential of fish and fish oil waste for bioenergy generation: Norway and beyond. Biofuels 2(4):375-387. https://doi.org/10.4155/bfs.11.114
  43. Zhang, L., Y. W. Lee and D. Jahng. 2011. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresource Technology 102(8):5048-5059. https://doi.org/10.1016/j.biortech.2011.01.082

Cited by

  1. Emissions of Odor, Ammonia, Hydrogen Sulfide, and Volatile Organic Compounds from Shallow-Pit Pig Nursery Rooms vol.39, pp.2, 2014, https://doi.org/10.5307/JBE.2014.39.2.076
  2. Minimization of diauxic growth lag-phase for high-efficiency biogas production vol.187, 2017, https://doi.org/10.1016/j.jenvman.2016.11.002