DOI QR코드

DOI QR Code

Variation of Glucosinolate Contents among Domestic Broccoli (Brassica oleracea L. var. italica) Accessions

국내 브로콜리(Brassica oleracea L. var. italica) 유전자원 내 Glucosinolate 함량 변이

  • Lee, Jun Gu (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kwak, Jung-Ho (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Um, Yeong Cheol (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Sang Gyu (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Jang, Yoon-Ah (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Choi, Chang Sun (Vegetable Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 이준구 (국립원예특작과학원 채소과) ;
  • 곽정호 (국립원예특작과학원 채소과) ;
  • 엄영철 (국립원예특작과학원 채소과) ;
  • 이상규 (국립원예특작과학원 채소과) ;
  • 장윤아 (국립원예특작과학원 채소과) ;
  • 최장선 (국립원예특작과학원 채소과)
  • Received : 2012.07.02
  • Accepted : 2012.08.03
  • Published : 2012.12.31

Abstract

A total of 95 broccoli (Brassica oleracea L. var. italica) accessions were evaluated for the identification of desulfo-glucosinolates and their content variation in the flower head using ultra performance liquid chromatography, to select the potentially functional broccoli breeding lines. The six individual desulfo-glucosinolates, including progoitrin, glucoraphanin, sinigrin, gluconapin, glucobrassicanapin, and glucobrassicin, were commonly identified, based on the chromatogram peak comparison with those of the nine individual glucosinolate standards. The total glucosinolate contents varied from 4.2 to $29.0{\mu}mol{\cdot}g^{-1}$ DW and the glucoraphanin (1.6 to $13.9{\mu}mol{\cdot}g^{-1}$ DW) was confirmed as a major constituent in the total glucosinolate profile among the six identified individual glucosinolate species, whereas the progoitrin, which was only detected in 13 accessions, showed accession-specific variation and negative correlation with glucoraphanin content. It was also revealed that the four major glucosinolates, such as glucobrassicanapin, glucoraphanin, glucobrassicin, and gluconapin, affected major content variation and showed higher positive inter-correlation. These results might be used for the selection of potential breeding materials as functional broccoli germplasm through the further evaluation on the stability and reproducibility of glucosinolate profile depending on environmental factors or cultural managements using the selected accessions.

본 연구는 UPLC를 이용하여 국내 브로콜리 육성계통 95점의 화구 내 desulfo-glucosinolate를 표준물질과 비교하여 정량 분석하고 그 함량변이를 평가하여, 궁극적으로 고기능성 국내 브로콜리 품종 육성의 기초자료로 이용하고자 수행되었다. 브로콜리 화구에서 9종의 표준물질과 비교하여 progoitrin, glucoraphanin, sinigrin, gluconapin, glucobrassicanapin 및 glucobrassicin 등 6종의 glucosinolate가 동정되었다. 전체 브로콜리 육성계통 95점에 대해서 총 glucosinolate 함량은 $4.2-29.0{\mu}mol{\cdot}g^{-1}$ DW의 변이를 보였다. 총 glucosinolate 중 glucoraphanin의 함량은 $1.6-13.9{\mu}mol{\cdot}g^{-1}$ DW로 가장 높은 비율을 차지하였고 progoitrin은 제한적인 13개의 계통에서만 특이적으로 함유되어 있었으며 glucoraphanin의 함량과는 부의 상관관계를 보였다. 동정된 glucosinolate 중 glucobrassicanapin, glucoraphanin, glucobrassicin 및 gluconapin의 4종 물질이 전체 브로콜리 계통의 함량변이에 크게 영향하였고 이들 4종 물질 상호 간에는 높은 정의 상관관계가 있음이 확인되었다. 본 연구결과에서 선발된 브로콜리 유망계통에 대해서는, 향후 재배 작형 및 연차간 물질함량의 안정성 평가와 유전자원 간 추가적인 비교평가 연구를 통하여 고기능성 육종소재로의 개발이 가능할 것으로 판단된다.

Keywords

References

  1. Bellostas, N., P. Kachlicki, J.C. Sorensen, and H. Sorensen. 2007. Glucosinolate profiling of seeds and sprouts of B. oleracea varieties used for food. Sci. Hort. 114:234-242. https://doi.org/10.1016/j.scienta.2007.06.015
  2. Bonnesen, C., I.M. Eggleston, and J.D. Hayes. 2001. Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res. 61:6120-6130.
  3. Cartea, M.E., P. Velasco, S. Obregon, G. Padilla, and A. de Haro. 2008. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69:403-410. https://doi.org/10.1016/j.phytochem.2007.08.014
  4. Chavadej, S., N. Brisson, J.N. McNeil, and V. de Luca. 1994. Redirection of tryptophan leads to production of low indole glucosinolate canola. Pro. Natl. Acad. Sci. USA 91:2166-2170. https://doi.org/10.1073/pnas.91.6.2166
  5. Chisholm, M.D. and L.R. Wetter. 1967. The biosynthesis of some isothiocyanates and oxazolidinethiones in Rape (Brassica campestris L.). Plant Physiol. 42:1726-1730. https://doi.org/10.1104/pp.42.12.1726
  6. Clarke, D.B. 2010. Glucosinolates, structures and analysis in food. Anal. Methods 2:310-325. https://doi.org/10.1039/b9ay00280d
  7. Engelen-Eigles, G., G. Holden, J.D.C. Cohen, and G. Garnder. 2006. The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). J. Agric. Food Chem. 54:328-334. https://doi.org/10.1021/jf051857o
  8. Fahey, J.W., A.T. Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51. https://doi.org/10.1016/S0031-9422(00)00316-2
  9. Halkier, B.A. and J. Gershenzon. 2006. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57:303-333. https://doi.org/10.1146/annurev.arplant.57.032905.105228
  10. Halkier, B.A. and L. Du. 1997. The biosynthesis of glucosinolates. Trends Plant Sci. 11:425-431.
  11. Hecht, S.S., S.G. Carmella, and S.E. Murphy. 1999. Effects of watercress consumption on urinary metabolites of nicotine in smokers. Cancer Epidemiol. Biomarker Prev. 8:907-913.
  12. Holst, B. and G. Williamson. 2004. A critical review of the bioavailability of glucosinolates and related compounds. Nat. Prod. Rep. 21:425-447. https://doi.org/10.1039/b204039p
  13. International Organization for Standardization (ISO) 1992. Rapeseeds-determination of glucosinolates content. Part I. Method using high performance liquid chromatography, 9167-1. ISO, Geneva, Switzerland.
  14. Jones, R.B., J.D. Faragher, and S. Winkler. 2006. A review of the influence of postharvest treatments on quality and glucosinolate content in broccoli (Brassica oleracea var. italica) heads. Postharvest Biol. Technol. 41:1-8. https://doi.org/10.1016/j.postharvbio.2006.03.003
  15. Joseph, M.A., K.B. Moysich, J.L. Freudenheim, P.G. Shields, E.D. Bowman, Y. Zhang, J.R. Marshall, and C.B. Ambrosone. 2004. Cruciferous vegetables, genetic polymorphisms in glutathione s-transferases m1 and t1, and prostate cancer risk. Nutr. Cancer 50:206-213. https://doi.org/10.1207/s15327914nc5002_11
  16. Keum, Y.S., W.S. Jeong, and A.N.T. Kong. 2004. Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat. Res. Fundam. Mol. Mech. Mutagen 555:191-202. https://doi.org/10.1016/j.mrfmmm.2004.05.024
  17. Kliebenstein, D.J., J. Kroymann, P. Brown, A. Figuth, D. Pedersen, J. Gershenzon, and T. Mitchell-Olds. 2001. Genetic control of natural variation in arabidopsis glucosinolate accumulation. Plant Physiol. 126:811-825. https://doi.org/10.1104/pp.126.2.811
  18. Kushad, M.M., A.F. Brown, A.C. Kurilich, J.A. Juvik, B.P. Klein, M.A. Wallig, and E.H. Jeffery. 1999. Variation of glucosinolates in vegetable crops of Brassica oleracea. J. Agric. Food Chem. 47:1541-1548. https://doi.org/10.1021/jf980985s
  19. Kwon, Y.D., E.Y. Ko, S.J. Hong, and S.W. Park. 2008. Comparison of sulforaphane and antioxidant contents according to different parts and maturity of broccoli. Kor. J. Hort. Sci. Technol. 26:344-349.
  20. Lee, J.G., J.C. Jeong, Y.H. Yoon, D.C. Chang, and C.S. Park. 2005. S and N fertilizations affect the content of desulfoglucosinolates in broccoli sprouts. J. Kor. Soc. Hort. Sci. 46:305-310.
  21. Matusheski, N.V., J.A. Juvik, and E.H. Jeffery. 2004. Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry 65:1273-1281. https://doi.org/10.1016/j.phytochem.2004.04.013
  22. Nachshon-Kedmi, M., F.A. Fares, and S. Yannai. 2004. Therapeutic activity of 3,3'-diindolylmethane on prostate cancer in an in vivo model. Prostate 61:153-160. https://doi.org/10.1002/pros.20092
  23. Pereira, F.M.V., E. Rosa, J.W. Fahey, K.K. Stephenson, R. Carvalho, and A. Aires. 2002. Influences of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. J. Agric. Food Chem. 50:6239-6244. https://doi.org/10.1021/jf020309x
  24. Perez-Balibrea, S., D.A. Moreno, and C. Garcia-Viguera. 2011. Genotypic effects on the phytochemical quality of seeds and sprouts from commercial broccoli cultivars. Food Chem. 125:348-354. https://doi.org/10.1016/j.foodchem.2010.09.004
  25. Petersen, B.L., S. Chen, C.H. Hansen, C.E. Olsen, and B.A. Halkier. 2002. Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta 214:562-571. https://doi.org/10.1007/s004250100659
  26. Rangkadilok, N., B. Tomkins, M.E. Nicolas, R.R. Premier, R.N. Bennett, D.R. Eagling, and P.W.J. Taylor. 2002a. The effect of post-harvest and packaging treatments on glucoraphanin concentration in broccoli (Brassica oleracea var. italica). J. Agric. Food Chem. 50:7386-7391. https://doi.org/10.1021/jf0203592
  27. Rangkadilok, N., M.E. Nicolas, R.N. Bennett, R.R. Premier, D.R. Eagling, and P.W.J. Taylor. 2002b. Developmental changes of sinigrin and glucoraphanin in three Brassica species (Brassica nigra, Brassica juncea, and Brassica oleracea var. italica). Sci. Hort. 96:11-26. https://doi.org/10.1016/S0304-4238(02)00118-8
  28. Rankadilok, N., M.E. Nicolas, R.N. Bennett, R.R. Premier, D.R. Eagling, and P.W.J. Taylor. 2002c. Determination of sinigrin and glucoraphanin in Brassica species using a simple extraction method combined with ion-pair HPLC analysis. Sci. Hort. 96:27-41. https://doi.org/10.1016/S0304-4238(02)00119-X
  29. Ratzka, A., H. Vogel, D.J. Kliebenstein, T. Mitchell-Olds, and J. Kroymann. 2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. USA 99:11223-11228. https://doi.org/10.1073/pnas.172112899
  30. Rosa, E.A.S. and A.S. Rodrigues. 2001. Total and individual glucosinolate content in 11 broccoli cultivars grown in early and late seasons. HortScience 36:56-59.
  31. Sarikamis, G., J. Marquez, R. MacCormack, R.N. Bennett, J. Roberts, and R. Mithen. 2006. High glucosinolate broccoli: A delivery system for sulforaphane. Mol. Breeding 18:219-228. https://doi.org/10.1007/s11032-006-9029-y
  32. Schreiner, M.C., P.J. Peters, and A.B. Krumbein. 2006. Glucosinolates in mixed-packaged mini broccoli and mini cauliflower under modified atmosphere. J. Agric. Food Chem. 54:2218-2222. https://doi.org/10.1021/jf0525636
  33. Spitz, M.R., C.M. Duphorne, M.A. Detry, P.C. Pillow, C.I. Amos, L. Lei, M. de Andrade, X.J. Gu, W.K. Hong, and X.F. Wu. 2000. Dietary intake of isothiocyanates: Evidence of a joint effect with glutathione S-transferase polymorphisms in lung cancer risk. Cancer Epidemiol Bio-markers Prev. 9:1017-1020.
  34. Traka, M. and R. Mithen. 2009. Glucosinolates, isothiocyanates and human health. Phytochem. Rev. 8:269-282. https://doi.org/10.1007/s11101-008-9103-7
  35. Vallejo, F., C. Garcia-Viguera, and F.A. Tomas-Barberan. 2003a. Changes in broccoli (Brassica oleracea L. var. italica) health-promoting compounds with inflorescence development. J. Agric. Food Chem. 51:3776-3782. https://doi.org/10.1021/jf0212338
  36. Vallejo, F., F.A. Tomas-Barberan, and C. Garcia-Viguera. 2003b. Effect of climatic and sulphur fertilization conditions on phenolic compounds and vitamin C in the inflorescences of eight broccoli cultivars. Eur. Food Res. Technol. 216:395-401.
  37. Velasco, L. and H.C. Becker. 2000. Variability for seed glucosinolates in a germplasm collection of the genus Brassica. Genet. Resources Crop Evol. 47:231-238. https://doi.org/10.1023/A:1008793623395
  38. West, L.G., K.A. Meyer, B.A. Balch, F.J. Rossi, M.R. Schultz, and G.W. Haas. 2004. Glucoraphanin and 4-hydroxyglucobrassicin contents in seeds of 59 cultivars of broccoli, raab, kohlrabi, radish, cauliflower, brussels sprouts, kale, and cabbage. J. Agric. Food Chem. 52:916-926. https://doi.org/10.1021/jf0307189
  39. Williams, D.J., C. Critchley, S. Pun, S. Nottingham, and T.J. O'Hare. 2008. Epithiospecifier protein activity in broccoli: The link between terminal alkenyl glucosinolates and sulphoraphane nitrile. Phytochemistry 69:2765-2773. https://doi.org/10.1016/j.phytochem.2008.09.018

Cited by

  1. Chemical Composition and Antioxidant Activity in Different Tissues of Brassica Vegetables vol.20, pp.1, 2015, https://doi.org/10.3390/molecules20011228
  2. Comparative analysis of individual glucosinolates, phytochemicals, and antioxidant activities in broccoli breeding lines vol.57, pp.4, 2016, https://doi.org/10.1007/s13580-016-0088-7
  3. 브로콜리 꽃송이 및 줄기의 항산화, 항균 및 대장암 세포 생육억제효과 vol.42, pp.1, 2012, https://doi.org/10.4014/kjmb.1401.01003
  4. 무 새싹채소의 구매시기에 따른 미생물 및 영양학적 품질특성 비교 vol.22, pp.2, 2012, https://doi.org/10.11002/kjfp.2015.22.2.232
  5. Fast determination of intact glucosinolates in broccoli leaf by pressurized liquid extraction and ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry vol.76, pp.3, 2015, https://doi.org/10.1016/j.foodres.2015.06.037
  6. Variation in the functional compounds of molten salt Kimchi during fermentation vol.46, pp.1, 2012, https://doi.org/10.7744/kjoas.20190007
  7. Chemometric approach based characterization and selection of mid-early cauliflower for bioactive compounds and antioxidant activity vol.57, pp.1, 2020, https://doi.org/10.1007/s13197-019-04060-6
  8. Genetic and principal component analysis for agro-morphological traits, bioactive compounds, antioxidant activity variation in breeding lines of early Indian cauliflower and their suitability for bree vol.95, pp.1, 2020, https://doi.org/10.1080/14620316.2019.1627912