DOI QR코드

DOI QR Code

Optimizing a Method for Measuring Firmness of Chinese Cabbage (Brassica rapa) and Comparing Textural Characteristics among Cultivars

배추 조직감 측정 방법의 최적화와 품종 간 물성특성비교

  • Jeong, Jun-Hyeuk (Department of Integrative Plant Science, Chung-Ang University) ;
  • Lee, Young-Seop (Department of Integrative Plant Science, Chung-Ang University) ;
  • Kim, Jongkee (Department of Integrative Plant Science, Chung-Ang University)
  • 정준혁 (중앙대학교 식물시스템과학전공) ;
  • 이영섭 (중앙대학교 식물시스템과학전공) ;
  • 김종기 (중앙대학교 식물시스템과학전공)
  • Received : 2012.03.22
  • Accepted : 2012.04.10
  • Published : 2012.12.31

Abstract

In order to optimize a method to determine the firmness of Chinese cabbage, hardness of midrib tissues was examined based on their chronological order of emergence. Texture measurement using volodkevich bite jaws gave a consistent and highest regression ($r^2=0.85$) between firmness and the order of leaf emergence, while blade set, cylinder probe, and crisp fracture support rig showed a lower coefficient of determination. Thickness of midrib tissue within an individual head from 16 cultivars of Chinese cabbage was positively correlated with the order of emergence, becoming thinner toward inner leaves. Mean thickness of midrib tissue from the head ranged from 7.74 mm for 'CR-shingshing' and 9.28 mm for 'Norangyeorum'. The covariance of leaf thickness within a head was highly cultivar-dependent, ranging from 23.6% for 'Chihili' and 5.8% for 'Bulam'. Firmness of the midrib tissue, defined as maximum peak height per tissue thickness, became higher from outer to inner leaves, showing $2^{nd}$ order of regression. Mean firmness of the midrib tissue from individual head varied from 1.58 N for 'Rangno' to 3.46 N for 'CR-shingshing'. The $10^{th}$ or $11^{th}$ leaf brought the best correlation coefficient (r = 0.81) between firmness of an individual leaf and the mean firmness of the entire leaves in a head, suggesting a reliable and rapid method to estimate the firmness of a head in lieu of examining all leaves in the head. The relationship between firmness of midrib tissue and dry mass ($r=0.70^{**}$) as well as cell wall content ($r=0.58^*$) of the head were positively correlated. Results obtained from the present study suggested that a new method to determine midrib firmness would enable to clarify the relationship between textural quality of fresh Chinese cabbage and their processed product, 'Kimchi'. It will also be important to apply this method to screen textural quality of various genotypes under breeding programs.

배추의 조직감 측정 방법을 확립하기 위하여 4종류의 탐침을 사용하여 '노랑봄' 배추의 엽서별 중륵의 경도를 비교 측정하였다. 이중에서 volodkevich bite jaws 탐침으로부터 엽서와 경도의 상관이 가장 높은 유의성이 나타났다($r^2=0.85$). 배추 중륵의 조직감은 단위두께당 조직파쇄에 소요되는 힘으로 나타냈다. 배추의 작형과 생태형을 고려하여 16 품종의 엽서별 중륵 부위의 경도를 측정하였다. 중륵의 두께 분포는 외엽부 수개의 잎에서 증가하다가 내엽으로 갈수록 감소하였으며, 중륵의 평균두께는 'CR-싱싱'이 7.74mm로 가장 얇고, '노랑여름' 배추는 9.28mm로 가장 두꺼웠다. 잎두께의 변이는 '치힐리'가 23.6%로 가장 높았으며, '불암' 배추는 5.8%로 가장 적었다. 중륵의 조직감은 모든 품종에서 외엽에서 일시적으로 감소하다가 내엽으로 갈수록 증가하는 2차 함수적인 관계를 보였고, 결정계수는 16품종 중 13품종에서 0.75 이상이었다. 'CR-그린'은 0.23으로 가장 낮았고, '치힐리' 배추는 0.96으로 적합성이 가장 높았다. 수확한 배추의 조직감을 신속하게 평가하기 위하여는 제10번 또는 제11번 잎의 중륵의 경도를 측정하는 방법을 제시하였으며, 16품종의 평균결정계수는 0.81이었다. 중륵의 건물중과 경도는 정의 상관($r=0.70^{**}$)을 보였고, 세포벽 함량과 경도와의 상관은 다소 낮았지만 유의성이 있었다($r=0.58^*$). 본 연구에서 얻어진 배추의 조직감 측정기술은 원료배추와 김치의 조직감의 관계를 구명하거나 조직감이 우수한 배추품종을 육성하는 데 활용할 수 있다고 사료되었다.

Keywords

References

  1. Brett, C. and K. Waldron. 1996. Cell walls in diet and health, p. 222-238. Physiology and biochemistry of plant cell walls. 2nd ed. Champman & Hall, London.
  2. Cho, Y.H., K.C. Yoo, J.K. Sung, B.M. Chun, S.H. Nam, H.D. Kim, and W.Y. Lee. 1998. Radish and Chinese cabbage for competitive technology and management. Nongmin Publishing Co., Seoul, Korea.
  3. Kang, N.K., J. Kim, B.M. Chun, and Y.H. Cho. 1999. A temporal relationship between tissue firmness and cell wall compositions in radish roots (Raphanus sativus L.). Acta Hort. 483:95-104.
  4. Kim, J., K.D. Kim, and Y.S. Choi. 2007. Chinese cabbage, a postharvest technology manual book. Ministry for Food, Agriculture, Forestry, and Fisheries, Seoul, Korea p. 1-35.
  5. Kim, J.Y., E.J. Lee, S.K. Park, G.W. Choi, and N.K. Baek. 2000. Physicochemical quality characteristics of several Chinese cabbage (Brassica pekinensis RuPR) cultivars. Kor. J. Hort. Sci. Technol. 18:348-352.
  6. Kim, J., T. Solomos, and K.C. Gross. 1999. Changes in cell wall galactosyl and soluble galactose content in tomato fruit stored in low oxygen atmospheres. Postharvest Biol. Technol. 17:33-38. https://doi.org/10.1016/S0925-5214(99)00024-1
  7. Lee, C.H. and I.J. Hwang. 1988. Comparison of cutting and compression tests for the texture measurement of Chinese cabbage leaves. Kor. J. Food Sci. Technol. 20:749-754.
  8. Lee, C.H., I.J. Hwang, and J.K. Kim. 1988. Macro-and microstructure of Chinese cabbage leaves and their texture measurement. Kor. J. Food. Sci. Technol. 20:742-748.
  9. Lee, I.S., W.S. Park, Y.J. Koo, and K.H. Kang. 1994. Changes in some characteristics of brined Chinese cabbage of fall cultivars during storage. Kor. J. Food. Sci. Technol. 26:239-245.
  10. Lee, S.K, J. Kim, Y.M. Park, J.G. Seo, Y.J. Yang, and Y.S. Hwang. 2007. Chinese cabbage, in postharvest handbook. Ministry for Food, Agriculture, Forest and Fisheries, Seoul, Korea p. 188-210.
  11. Ministry for Food, Agriculture, Forestry, and Fisheries (MIFAFF). 2011. Current status of greenhouse and vegetable crop production. www.mifaff.go.kr.
  12. Park, K.Y., E.J. Cho, S.M. Lee, and S.H. Rhee. 1998. Studies on the standardization of Chinese cabbage Kimchi. Kor. J. Food. Sci. Technol. 30:324-332.
  13. Yoon, E.J. and C.H. Lee. 1990. Changes in the force-distance curve of Chinese cabbage leaf-stalk by the type of puncture and cutting probes and their relation to the textural parameters. Kor. J. Rheology. 2:46-52.
  14. Yoon, J.Y. S.S. Lee, and J.G. Woo. 1985. A questionnaire survey on preference of Kimchi and heading Chinese cabbage. J. Kor. Soc. Hort. Sci. 26:122-126.

Cited by

  1. Physicochemical Quality Changes in Chinese Cabbage with Storage Period and Temperature: A Review vol.41, pp.4, 2016, https://doi.org/10.5307/JBE.2016.41.4.373
  2. A Study on the Dust Control Effect of PM10 Dust Inhibitor by Polysaccharides and its Effect on Water Quality and Soil Environment vol.39, pp.2, 2017, https://doi.org/10.4491/KSEE.2017.39.2.59