DOI QR코드

DOI QR Code

KRONECKER FUNCTION RINGS AND PRÜFER-LIKE DOMAINS

  • Received : 2012.03.31
  • Accepted : 2012.10.15
  • Published : 2012.12.30

Abstract

Let D be an integral domain, $\bar{D}$ be the integral closure of D, * be a star operation of finite character on D, $*_w$ be the so-called $*_w$-operation on D induced by *, X be an indeterminate over D, $N_*=\{f{\in}D[X]{\mid}c(f)^*=D\}$, and $Kr(D,*)=\{0\}{\cup}\{\frac{f}{g}{\mid}0{\neq}f,\;g{\in}D[X]$ and there is an $0{\neq}h{\in}D[X]$ such that $(c(f)c(h))^*{\subseteq}(c(g)c(h))^*$}. In this paper, we show that D is a *-quasi-Pr$\ddot{u}$fer domain if and only if $\bar{D}[X]_{N_*}=Kr(D,*_w)$. As a corollary, we recover Fontana-Jara-Santos's result that D is a Pr$\ddot{u}$fer *-multiplication domain if and only if $D[X]_{N_*} = Kr(D,*_w)$.

Keywords

References

  1. D.D. Anderson and S.J. Cook, Two star operations and their induced lattices, Comm. Algebra 28 (2000), 2461-2475. https://doi.org/10.1080/00927870008826970
  2. J.T. Arnold, On the ideal theory of the Kronecker function ring and the domain D(X), Canad. J. Math. 21 (1969), 558-563. https://doi.org/10.4153/CJM-1969-063-4
  3. G.W. Chang, *-Noetherian domains and the ring $D[X]_N$., J. Algebra 297 (2006), 216-233. https://doi.org/10.1016/j.jalgebra.2005.08.020
  4. G.W. Chang, Prufer *-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra 319 (2008), 309-319. https://doi.org/10.1016/j.jalgebra.2007.10.010
  5. G.W. Chang and M. Fontana, Upper to zero in polynomial rings and Prufer-like domains, Comm. Algebra 37 (2009), 164-192. https://doi.org/10.1080/00927870802243564
  6. G.W. Chang and M. Zafrullah, The w-integral closure of integral domains, J. Algebra 259 (2006), 195-210.
  7. M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prufer integral closure, Comm. Algebra 26 (1998), 1017-1039. https://doi.org/10.1080/00927879808826181
  8. M. Fontana, J. Huckaba, and I. Papick, Prufer domains, Marcel Dekker, 1997.
  9. M. Fontana, P. Jara, and E. Santos, Prufer -multiplication domains and semistar operations, J. Algebra Appl. 2 (2003), 1-30. https://doi.org/10.1142/S0219498803000325
  10. M. Fontana and K.A. Loper, Kronecker function rings: a general approach, in Ideal Theoretic Methods in Commutative Algebra, Lecture Notes in Pure Appl. Math., Marcel Dekker, 220 (2001), 189-205.
  11. M. Fontana and K.A. Loper, Nagata rings, Kronecker function rings and related semistar operations, Comm. Algebra 31 (2003), 4775-4801. https://doi.org/10.1081/AGB-120023132
  12. M. Fontana and K.A. Loper, A historical overview of Kronecker function rings, Nagata rings, and related star and semistar operations, in: J.W. Brewer, S. Glaz, W.J. Heinzer, B.M. Olberding (Eds.), Multiplicative Ideal Theory in Commutative Algebra. A Tribute to the Work of Robert Gilmer, Springer, 2006, pp. 169-187.
  13. R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.
  14. E. Houston, S. Malik, and J. Mott, Characterizations of -multiplication do- mains, Canad. Math. Bull. 27 (1984), 48-52. https://doi.org/10.4153/CMB-1984-007-2
  15. E. Houston and M. Zafrullah, On t-invertibility, II, Comm. Algebra 17 (1989), 1955-1969. https://doi.org/10.1080/00927878908823829
  16. B.G. Kang, Prufer v-multiplication domains and the ring $R[X]_N_v$, J. Algebra 123 (1989), 151-170. https://doi.org/10.1016/0021-8693(89)90040-9
  17. A. Okabe and R. Matsuda, Star operations and generalized integral closures, Bull. Fac. Sci., Ibaraki Univ. 24 (1992), 7-13. https://doi.org/10.5036/bfsiu1968.24.7