DOI QR코드

DOI QR Code

Train detection in railway platform area using image processing technology

영상처리를 이용한 철도 승강장 영역에서의 열차상태 검지방법

  • Oh, Sehchan (Division of Metropolitan Transportation Research Center, Korea Railroad Research Institute) ;
  • Yoon, Yongki (Division of Metropolitan Transportation Research Center, Korea Railroad Research Institute) ;
  • Baek, Jonghyun (Division of Metropolitan Transportation Research Center, Korea Railroad Research Institute) ;
  • Jo, Hyunjeong (Division of Metropolitan Transportation Research Center, Korea Railroad Research Institute)
  • 오세찬 (한국철도기술연구원 광역도시교통연구본부) ;
  • 윤용기 (한국철도기술연구원 광역도시교통연구본부) ;
  • 백종현 (한국철도기술연구원 광역도시교통연구본부) ;
  • 조현정 (한국철도기술연구원 광역도시교통연구본부)
  • Received : 2012.09.20
  • Accepted : 2012.12.06
  • Published : 2012.12.31

Abstract

Currently, dozens of CCTVs are widely used in railway station for monitoring passengers in danger and security areas. The most frequent accidents occur at the platform area where passengers boarding the train. However, It is almost impossible that station operator monitors dozens of CCTV screens and recognizes immediately accidents and handle them. Therefore, railway platform monitoring system using image processing technology which automatically detects platform accidents is needed, and in order to that, preferentially, accurate determination of train state in the platform is required. In the paper, we propose train state detection algorithm for vision based railway platform monitoring system. the proposed algorithm determines four different states i.e. trains approach(IN), departure(OUT), stop(ON), and empty(OFF) of the train, in the platform. To evaluate the proposed algorithm, we present the train detection results for the Seoul Metro Line 4 Dongjak and Namtaeryeong Station.

현재 철도 역사의 승객 위험영역과 보안영역 등의 감시를 위해 수십대의 CCTV를 널리 이용하고 있다. 그중에서 가장 빈번한 사고가 발생되는 곳은 승객의 열차 승하차가 이루어지는 승강장 영역이다. 하지만 사고 예방과 신속한 대응을 위해 역무원이 여러 대의 CCTV를 항시 모니터링 하기는 불가능하다. 따라서 위험상황을 자동으로 인지할 수 있는 영상처리 기술을 이용한 승강장 모니터링 시스템이 요구되며, 이를 위해서는 우선적으로 승강장에서의 정확한 열차상태 판단이 필요하다. 본 논문은 비전기반 승강장 모니터링 시스템을 위한 승강장에서의 열차상태에 대한 검지방법을 제안한다. 제안된 검지 방법은 승강장에서의 열차 점유영역을 분석하여 열차의 진입(IN), 진출(OUT), 정지(ON), 없음(OFF)의 4가지 생태를 판별한다. 제안된 검지방법의 성능 평가을 위해 서울메트로 4호선 동작역과 남태령역을 대상으로 열차상태 검지결과를 제시하였다.

Keywords

References

  1. I.Yoda, K.Sakaue. "Ubiquitous Stereo Vision for Controlling Safety on Platforms in Railroad Station," IEEJ Tr. on Electronics, Information and Systems, Vol. 124, No. 3, Mar., pp.805-811, 2004, Article(CrossRefLink) https://doi.org/10.1541/ieejeiss.124.805
  2. F.Kruse, S.Milch, H.Rohling. "Multi Sensor System for ObstacleDetection in Train Applications," Proc. of IEEE Tr., June, pp.42-46, 2003.
  3. Sehchan Oh, Sunghuk Park, Changmu Lee, "Multi Sensor System for ObstacleDetection in Train Applications," ICEE, 2007.
  4. Sehchan Oh, Sunghuk Park, Changmu Lee, "A Platform Suveillance Monitoring System using Image Processing for Passenger Safety in Railway Station," ICCAS, 2007, Article(CrossRefLink)
  5. Y.Sasaki, N.Hiura. "Development of Image Processing Type Fallen Passenger Detecting System," JR-EAST Technical Review Special Edition Paper, No. 2, pp.66-72, 2003.
  6. J. Vhzquez, M. Mao, "Detection of moving objects in railway using vision," IEEE Intelligent Vehicles Symposium University of Parma, Parma, Italy Jun. 1447, 2004, Article(CrossRefLink)
  7. N. Paragios and V. Ramesh. An MRF-based approach for real-time subway monitoring. In IEEE Conference on Computer Vision and Pattern Recognition, 2001, Article(CrossRefLink)
  8. I.Yoda, "Image processing technology for advanced safety to people in railroad transportation - For railroad crossing and station platform ," IPSJ Magazine Vol.48, No.1, pp.10-16, Jan. 2007.
  9. I.Yoda, D. Hosotani, and K. Sakaue, "Multi-point Stereo Camera System for Controlling Safety at Railroad Crossings," Proc. of the IEEE International Conference on Computer Vision Systems, 2006, Article(CrossRefLink)
  10. Shigeki Sugimoto, Hayato Tateda, Hidekazu Takahashi, Masatoshi Okutomi, "Obstacle Detection Using Millimeter-Wave Radar and Its Visualization on Image Sequence," icpr, pp. 342-345, 17th International Conference on Pattern Recognition (ICPR'04) - Volume 3, 2004, Article(CrossRefLink)