DOI QR코드

DOI QR Code

Effect of R-Z Relationships Derived from Disdrometer Data on Radar Rainfall Estimation during the Heavy Rain Event on 5 July 2005

2005년 7월 5일 폭우 사례 시 우적계 R-Z 관계식이 레이더 강우 추정에 미치는 영향

  • Lee, GyuWon (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Kwon, Byung-Huk (Department of Environmental Atmospheric Sciences, Pukyong National University)
  • 이규원 (경북대학교 천문대기과학과) ;
  • 권병혁 (부경대학교 환경대기과학과)
  • Received : 2012.11.08
  • Accepted : 2012.12.03
  • Published : 2012.12.31

Abstract

The R-Z relationship is one of important error factors to determine the accuracy of radar rainfall estimation. In this study, we have explored the effect of the R-Z relationships derived from disdrometer data in estimating the radar rainfall. The heavy rain event that produced flooding in St-Remi, Quebec, Canada has been occurred. We have tried to investigate the severity of rain for this event using high temporal (2.5 min) and spatial resolution ($1^{\circ}$ by 250 m) radar data obtained from the McGill S-band radar. Radar data revealed that the heavy rain cells pass directly over St-Remi while the coarse raingauge network was not sufficient to detect this rain event. The maximum 30 min (1 h) accumulation reaches about 39 (42) mm in St-Remi. During the rain event, the two disdrometers (POSS; Precipitation Occurrence Sensor System) were available: One used for the reflectivity calibration by comparing disdrometer Z and radar Z and the other for deriving disdrometric R-Z relationships. The result shows the significant improvement with the disdrometric reflectivity-dependent R-Z relationships against the climatological R-Z relationship. The bias in radar rain estimation is reduced from +12% to -2% and the root-mean squared error from 16 to 10% for daily accumulation. Using the estimated radar rainfall rate with disdrometric R-Z relationships, the flood event was well captured with proper timing and amount.

R-Z 관계식은 레이더 강우추정의 정확도를 결정하는 중요한 요소이다. 본 연구에서는 캐나다 궤벡주의 셍레미에서 홍수를 야기한 폭우사례에서 관측된 우적계 및 레이더 자료를 이용하여 레이더 강우추정 시 우적계 자료에서 도출된 R-Z 관계식의 효과를 분석하였다. 이를 위하여 맥길 S-밴드 레이더에서 시간 분해능 2.5분과 공간 분해능 $1^{\circ}{\times}250m$로 관측된 레이더 반사도를 사용하였다. 레이더 반사도 자료에서는 폭우를 동반한 강우세포가 셍레미를 통과한 것으로 관측되었지만 우량계 관측망에서는 낮은 공간 분해능으로 인하여 이 세포가 관측되지 않았다. 셍레미에서 30분과 1시간 최대 누적 강우량은 각각 39 mm와 42 mm였다. 강우사례 동안 두 개의 우적계(POSS; Precipitation Occurrence Sensor System)가 사용되었다. 하나의 우적계는 레이더 반사도와 우적계 반사도를 비교하여 레이더 반사도를 보정하고 다른 우적계는 R-Z 관계식을 유도하는데 사용되었다. 기후학적 R-Z 관계식을 사용하였을 때 보다 반사도에 의존적인 우적계에서 유도된 관계식을 사용하였을 때 강우 추정 오차가 크게 줄었다. 일 누적 강우량에 대하여 편차는 +12%에서 -2%, 평균제곱근오차가 16%에서 10%로 줄었다. 우적계에서 도출된 R-Z 관계식으로 추정된 레이더 강우장을 이용하였을 때 홍수사례에 대하여 강우 발생 시간 및 강우량이 잘 일치하였다.

Keywords

References

  1. Berenguer, M. and Zawadzki, I., 2008, A study of the error covariance matrix of radar rainfall estimates in stratiform rain. Weather and Forecasting, 23, 1085-1101. https://doi.org/10.1175/2008WAF2222134.1
  2. Berenguer, M. and Zawadzki, I., 2009, A study of the error covariance matrix of radar rainfall estimates in stratiform rain. Part II: Scale dependence. Weather and Forecasting, 24, 800-811. https://doi.org/10.1175/2008WAF2222210.1
  3. Fujiwara, M., 1965, Raindrop-size distribution from individual storms. Journal of Atmospheric Sciences, 22, 585-591. https://doi.org/10.1175/1520-0469(1965)022<0585:RSDFIS>2.0.CO;2
  4. Gunn, R. and Kinzer, G.D., 1949, The terminal velocity of fall for water droplets in stagnant air. Journal of Meteorology, 6, 243-248. https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2
  5. Huggel, A., Schmid, W., and Waldvogel, A., 1996, Raindrop size distributions and the radar bright band. Journal of Applied Meteorology, 35, 1688-1701. https://doi.org/10.1175/1520-0450(1996)035<1688:RSDATR>2.0.CO;2
  6. Joss, J. and Waldvogel, A., 1970, A method to improve the accuracy of radar measured amounts of precipitation. Proceedings of the fourteenth conference on Radar Meteorology, American Meteorological Society, Tucson, USA, 237-238.
  7. Lee, C.K., Lee, G., Zawadzki, I., and Kim, K.E., 2009, A preliminary analysis of spatial variability of raindrop size distributions during stratiform rain events. Journal of Applied Meteorology and Climatology, 48, 270-283. https://doi.org/10.1175/2008JAMC1877.1
  8. Lee, G.W., Zawadzki, I., Szymer, W., Sempere-Torres, D., and Uijlenhoet, R., 2004, A general approach to double-moment normalization of drop size distributions. Journal of Applied Meteorology, 43, 264-281. https://doi.org/10.1175/1520-0450(2004)043<0264:AGATDN>2.0.CO;2
  9. Lee, G.W. and Zawadzki, I., 2005a, Variability of drop size distributions: Noise and noise filtering in disdrometric data. Journal of Applied Meteorology, 44, 264-281.
  10. Lee, G.W. and Zawadzki, I., 2005b, Variability of drop size distributions: Time scale dependence of the variability and its effects on rain estimation. Journal of Applied Meteorology, 44, 241-255. https://doi.org/10.1175/JAM2183.1
  11. Lee, G.W. and Zawadzki, I., 2006, Errors in the radar calibration by gauge, disdrometer, and polarimetry: Theoretical limit and application to operational radar. Journal of Hydrology, 328, 83-97. https://doi.org/10.1016/j.jhydrol.2005.11.046
  12. Lee, G.W., Seed, A., and Zawadzki, I., 2007, Modelling the variability of drop size distributions in space and time. Journal of Applied Meteorology and Climatology, 46, 742-756. https://doi.org/10.1175/JAM2505.1
  13. List, R., Donaldson, N.R., Stewart, R.E., 1987, Temporal evolution of drop spectra to collisional equilibrium in steady and pulsating rain. Journal of Atmospheric Sciences, 44, 362-372. https://doi.org/10.1175/1520-0469(1987)044<0362:TEODST>2.0.CO;2
  14. List, R., 1988, A linear radar reflectivity-rainrate relationship for steady tropical rain. Journal of Atmospheric Sciences, 45, 3564-3572. https://doi.org/10.1175/1520-0469(1988)045<3564:ALRRRF>2.0.CO;2
  15. Richards, W.G. and Crozier, C.L., 1983, Precipitation measurement with a C-band weather radar in southern Ontario. Atmosphere-Ocean, 21, 125-137 https://doi.org/10.1080/07055900.1983.9649160
  16. Sempere-Torres, D., Porrà, J.M., and Creutin, J.-D., 1998, Experimental evidence of a general description for raindrop size distribution properties. Journal of Geophysical Research, 103, 1785-1797. https://doi.org/10.1029/97JD02065
  17. Sheppard, B.E., 1990, Measurement of raindrop size distribution using a small Doppler radar. Journal of Atmospheric and Oceanic Technology, 7, 255-268. https://doi.org/10.1175/1520-0426(1990)007<0255:MORSDU>2.0.CO;2
  18. Sheppard, B.E. and Joe, P.I., 1994, Comparison of raindrop size distribution measurements by a Joss-Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. Journal of Atmospheric and Oceanic Technology, 11, 874-887. https://doi.org/10.1175/1520-0426(1994)011<0874:CORSDM>2.0.CO;2
  19. Tokay, A., Hartmann, P., Battaglia, A., Gauge, K.S., Clark, W.L., and Williams, C.R., 2009, A field study of reflectivity and Z-R relations using vertically pointing radars and disdrometers. Journal of Atmospheric and Oceanic Technology, 26, 1120-1134. https://doi.org/10.1175/2008JTECHA1163.1
  20. Zawadzki, I., 1984, Factors affecting the precision of radar measurements of rain. Proceedings of the twenty-second conference on Radar Meteorology, American Meteorological Society, Zurich, Switzerland, 251-256.
  21. Zawadzki, I. and Antonio, M.A., 1988, Equilibrium raindrop size distributions in tropical rain. Journal of Atmospheric Sciences, 45, 3452-3459. https://doi.org/10.1175/1520-0469(1988)045<3452:ERSDIT>2.0.CO;2