DOI QR코드

DOI QR Code

바이오가스 내의 불활성 가스 성분 변화가 SI 엔진 성능에 주는 영향

Effects of Inert Gas Composition Variations in Biogas on the Performance of a SI Engine

  • 이선엽 (한국기계연구원 그린동력연구실) ;
  • 박승현 (과학기술연합대학원대학교 청정환경시스템공학과) ;
  • 박철웅 (한국기계연구원 그린동력연구실) ;
  • 김창기 (한국기계연구원 그린동력연구실) ;
  • 이장희 (한국기계연구원 그린동력연구실) ;
  • 우세종 (한국기계연구원 그린동력연구실)
  • Lee, Sunyoup (Engine Research Team, Korea Inst. of Machinery and Materials) ;
  • Park, Seunghyun (Dept. of Environmental System Eng., Univ. of Sci. and Tech.) ;
  • Park, Cheolwoong (Engine Research Team, Korea Inst. of Machinery and Materials) ;
  • Kim, Changgi (Engine Research Team, Korea Inst. of Machinery and Materials) ;
  • Lee, Janghee (Engine Research Team, Korea Inst. of Machinery and Materials) ;
  • Woo, Sejong (Engine Research Team, Korea Inst. of Machinery and Materials)
  • 투고 : 2012.07.06
  • 심사 : 2012.10.10
  • 발행 : 2012.10.31

초록

바이오가스는 Biomass, 유기성 폐기물 등의 혐기소화 공정을 통해 얻을 수 있는 대표적인 신재생연료로 저발 열량에도 불구하고 탄소중립적인 특성이 있기 때문에 이를 엔진에 적용하여 에너지를 생산하고자 하는 노력이 계속되어왔다. 바이오가스는 원료의 종류 및 혐기소화 공정 조건에 따라 그 연료 조성이 달라질 수 있는데, 이러한 조성 변화는 엔진 성능에 큰 영향을 미칠 수 있기 때문에 이에 대한 연구가 필요한 실정이다. 본 연구에서는 바이오가스 연료 내 불활성가스의 종류 및 비율을 변화시켜 모사하고 이를 이용하여 바이오가스 내 불활성가스 종류의 변화가 엔진 성능 및 배기 특성에 주는 영향을 파악하였다. 실험 결과로 각 불활성가스 종류 및 함량에 따른 최적 점화시기를 결정하였으며, 불활성 가스 조성 변화가 엔진 출력, 효율, 배기 성능에 미치는 영향을 제시하였다.

Biogas can be obtained from biogenic materials through an anaerobic digestion process. Since biogas has low calorific value and its composition significantly varies, appropriate combustion strategies need to be established to obtain stable combustion in engine applications. In this study, efforts have been made to investigate the effects of inert gas composition variations on engine performance and emissions. Results show that the MBT spark timing was advanced and $NO_x$ was reduced as the inert gas in the biogas rose. Moreover, $NO_x$ emission drop in $CO_2$ diluted biogas was more significant than that of $N_2$ due to higher heat capacity of $CO_2$, while THC emissions showed the opposite tendency. Thermal efficiency was increased in $N_2$ case with elevation of $N_2$ due to the decreased heat loss and PMEP. However, there is no difference in $CO_2$ case because of deteriorated flame propagation speed.

키워드

참고문헌

  1. Huang, J., and Crookes, R.J., "Assessment of Simulated Biogas as a Fuel for the Spark Ignition Engine", Fuel, 77(15), 793-1801, (1998) https://doi.org/10.1016/S0016-2361(97)00239-1
  2. Stone, C. R. and Ladommatos, N., "Design and Evaluation of a Fast-Burn Spark-Ignition Combustion System for Gaseous Fuels at High Compression Ratios", Journal of the Institute of Energy, 64(461), 202-211, (1991)
  3. Marcari, N. C. and Richardson, R. D, "Operation of a Caterpillar 3516 Spark-Ignited Engine on Low-Btu Fuel", Trans. ASME J. Engineering for Gas Turbines and Power, 109(4), 443-447, (1987) https://doi.org/10.1115/1.3240061
  4. Mueller, G. P., "Landfill Gas Application Development of the Caterpillar G3600 Spark-Ignited Gas Engine", Trans. ASME J. Engineering for Gas Turbines and Power, 117(4), 820-825, (1995) https://doi.org/10.1115/1.2815470
  5. Moss, A.R., Methane, Chalcombe Publications, Kingston, 23-47, (1993)
  6. Porpatham, E., Ramesh, A., and Nagalingam B., "Effect of Hydrogen Addition on the Performance of a Biogas Fuelled Spark Ignition Engine", Int'l Journal of Hydrogen Energy, 32(12), 2057-2065, (2007) https://doi.org/10.1016/j.ijhydene.2006.09.001
  7. Muraro, W., and Shiraiwa, N. M., "Evaluation of Engine Running with Gas of Low Power Heat Rate from of Biomass (Rice Husk) Produced by Gasifier", SAE 2005-01-2185, (2005)
  8. Porpatham, E., Ramesh, A., and Nagalingam B., "Investigation on the Effect of Concentration of Methane in Biogas When Used as a Fuel for a Spark Ignition Engine", Fuel, 87(8-9), 1651-1659, (2008) https://doi.org/10.1016/j.fuel.2007.08.014
  9. Jang, J., and Bae, C., "Effect of Nitrogen and Carbon Dioxide on DME Homogeneous Charge Compression Ignition Engine", KSAE, 16(5), 171-178, (2008)
  10. Huang, J., and Crookes R., "Spark-Ignition Engine Performance with Simulated Biogas-a Comparison with Gasoline and Natural Gas." J. Inst. Energy, 71, 197-203, (1998)
  11. Kutlar, O. A., Arslan, H., and Calik, A. T., "Methods To Improve Efficiency of Four Stroke, Spark Ignition Engines at Part Load", Energy Conversion and Management, 46(20), 3202-3220, (2005) https://doi.org/10.1016/j.enconman.2005.03.008
  12. Burbano, H. J., Pareja, J., Andre's, and Amell, A., "Laminar Burning Velocities and Flame Stability Analysis of Mixtures with Dilution of $N_{2}$ and $Co_{2}$", International journal of hydrogen energy, 36, 3232-3242, (2011) https://doi.org/10.1016/j.ijhydene.2010.11.089
  13. Lee, K., Kim, T., Cha, H., Song, S., and Chun, K.M., "Generating Efficiency and Nox Emissions of a Gas Engine Generator Fueled with a Biogas-Hydrogen Blend and Using an Exhaust Gas Recirculation System", International journal of hydrogen energy, 35, 5723-5730, (2010) https://doi.org/10.1016/j.ijhydene.2010.03.076
  14. Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, (1988)

피인용 문헌

  1. Study on the Performance of an SI Gas Engine by Fuel Composition and Spark Plug Variation vol.18, pp.6, 2014, https://doi.org/10.7842/kigas.2014.18.6.21
  2. Effects of Spark Plug Changes on Performance of an SI Engine Fueled by Gaseous Fuel vol.17, pp.6, 2013, https://doi.org/10.7842/kigas.2013.17.6.27