DOI QR코드

DOI QR Code

Application of Modelling Stress-Strain Relations (Part I) -Application to Plane Strain Compression Tests-

응력-변형률 관계 정식화의 적용성(I) -평면변형률압축시험에 대한 적용성-

  • 박춘식 (창원대학교 토목공학과)
  • Received : 2011.08.24
  • Accepted : 2012.11.27
  • Published : 2012.12.31

Abstract

FEM requires the stress-strain relationship equations for numerical analyses. However, most formulations for the stress-strain relationship published up to the present are not satisfactory enough to properly express all the levels from the small strain to the peak. Tatsuoka and Shibuya (1991) suggested a new single formulation applicable not only to a wide range of geo-materials from soft clay to soft rock, but also to a wide range of strain levels from $10^{-6}$ to $10^{-2}$. The plain strain compression test is carried out to seven samples of research standard sand specimens and two samples of glass beads, which have been used at world-renowned research institutes. In this study, strains of the maximum principal stress (${\sigma}_1$) and the minimum principal stress (${\sigma}_3$) were thoroughly measured from $10^{-6}$ to $10^{-2}$, and the result, applied to Tatsuoka and Shibuya's new formulation, coincided closely with the measured data of the stress-strain relationship from the small strain to the peak.

유한요소해석 등에 의한 수치해석에서는 정식화된 응력-변형률 관계가 필요하다. 그러나 현재까지 여러 연구자들에 의해 발표된 응력-변형률 관계의 정식화는 미소변형률 수준에서부터 피크에 이르기까지 전체를 모두 만족하지 못하게 표현하였다. Tatsuoka and Shibuya(1991)는 하나의 식으로 연약 점성토에서 연암에 이르는 광범위한 지반재료에 대해 적용 가능하며, 넓은 범위의 변형률 수준($10^{-6}{\sim}10^{-2}$)에 대해 적용할 수 있는 새로운 제안식을 발표하였다. 본 연구는 세계 각국의 주요 연구기관에서 사용되고 있는 7종류의 연구용 표준사 공시체 및 2종류의 유리 구슬(Glass beads) 공시체를 이용하여 평면변형률압축시험을 실시하였다. 최대주응력방향(${\sigma}_1$)의 변형률과 최소주응력방향(${\sigma}_3$)의 변형률을 각각 $10^{-6}$에서 $10^{-2}$까지 상세히 측정하였고, 얻어진 시험 결과를 새롭게 제안된 식에 적용하였다. 그 결과 미소변형률 수준에서 피크에 이르는 응력-변형률 관계의 실측된 데이터와 매우 잘 일치하는 결과를 얻었다.

Keywords

References

  1. Goto, S., Tatsuoka, F., Shibuya, S., Kim, Y. S., and Sato, T. (1991), "A Simple Gauge for Local Small Strain Measurements in the Laboratory," Soils and Foundations, Vol.31, No.1, pp.169-180. https://doi.org/10.3208/sandf1972.31.169
  2. Hardin, B. O. and Drnevich, V. P. (1972), "A Study on the Hyperbolic Model for Nonlinear Stress-Strain Relations of Geo-Materials", Journal of SMF Div., ASCE, Vol.98, No.SM7, pp.667-692.
  3. Kondner, R. B. (1963), "Hyperbolic Stress-Strain Response : Cohesive Soils", Journal of SMF Div., ASCE, Vol.89, No.SM1, pp.115-143.
  4. Park, C. S. and Jang, J. W. (1998), "Lubrication of Specimen Ends for Granular Materials in Element Tests", Journal of Korean Society of Civil Engineers, Vol.18, No.3, pp.689-698.
  5. Park, C. S., Dong, J., Abe, F., Shibuya, S., and Tatsuoka, F. (1990), "Small Strain Behaviour of Sands in Plane Strain Compression-Part II," SEISAN-KENKYU, Vol.42, No.10, pp.590-593.
  6. Park, C. S., Tatsuoka, F., Jang, J. W., and Chung, C. K. (1994), "Small Strain Measurements of Sands in Plane Strain Compression", Journal of the Korean Geotechnical Society, Vol.10, No.1, pp.27-45.
  7. Sibuya, S., Park, C. S., Abe, F., and Tatsuoka, F. (1991), "Small Strain Behaviour of Sands in Plane Strain Compression-Part I", SEISAN-KENKYU, Vol.42, No.9, pp.561-564.
  8. Sibuya, S., Tatsuoka, F., Abe, F., Kim, Y. S., and Park, C. S. (1991), "Non-Linearity in Stress-Strain Relations of a Wide Range of Geotechnical Engineering Materials-Part I", SEISAN-KENKYU, Vol. 43, No.2, pp.129-132.
  9. Tatsuoka, F. and Shibuya, S. (1991), "Modelling of Non-Linear Stress-Strain Relations of Soils and Rocks-Part I", SEISAN- KENKYU, Vol.43, No.9, pp.23-26.